
Project 6: Seismic imaging of the ocean
In collaboration with various partners in United States and Spain
Funded by the NSF, NSERC, Maria Curie International Fellowship and other source
We carried out several physical oceanography experiments coincident with our MCS solid-earth studies. Examples are:
Reflection Ocean Seismic Experiment (ROSE).This experiment was done during 2007 R/V Endeavor cruise EN438 along selected UNCLOS MCS lines (Figure 1). The combined MCS and XBT/CTD profiles provide a special opportunity to obtain, for the first time, detailed depth-images of the Gulf Stream offshore Nova Scotia, its meanders, warm core rings, water mass boundaries, and other features that have important societal implications. Warm water carried by the Gulf Stream is a key component of the global climate system and is a source of heat energy that drives major storms on the Eastern Seaboard. Warm core rings transport warm water to the Scotian Shelf, changing the thermal and saline properties of shelf waters, and affecting East Coast weather.
The main goal of our seismic oceanography investigation is to image the finestructure generated by the mixing processes along the shelf-break. The seismic data will be compared with temperature, sound speed and salinity profiles simultaneously acquired with XBT, XSV and XCTD probes.We used 125 XBTs, 83 XSVs and 12 XTCDs. XBTs and XSVs were deployed in an alternating order. Along Lines 3, 4 and 5 the XBT and XSV pairs were deployed as close as possible, at ~0.6 km spacing. In order to continuously sample for ~60 km along the slope, the distance between the XBT/XSV pairs was set at ~3.5 km. For Lines 1, 2 and 6, the spacing between all probes was as short as possible, ~0.6 km.
There were two research vessel involved in the Juan de Fuca Ridge2Trench survey: RV Marcus Langseth, which was used to carry out the MCS data acquisition and RV Oceanus, which wasused for the OBS instruments. We used R/V Langseth to also acquire XBT and XSV data simultaneously with the seismic acquisition. Additionally, we used RV Oceanus to carry out CTD space-coincident casts (not in time) with the seismic acquisition. CTD cast provide data that can be used to detect the thermohaline structure with higher resolution than with the expendable probes and they provide information on the temperature-salinity relationship in the area. 378 oceanographic probes were deployed simultaneously to the seismic data acquisition: (1) 237 XBT-T5, 10 boxes (1box=12probes) bought by Dalhousie University, 5 by the Spanish Scientific Research Council (CSIC) and 6 by the MARCOM/ Canada National Defence; (2) 120 XSV-02 from the MARCOM/ Canada National Defence; (3) 21 XBT-T7, 1 box from the MARCOM/ Canada National Defence and 9 XBT-T7 provided from the RV Langseth. The XBTs launched along Line 2 had 1 km spacing in the deepest section and 3 km spacing in the section over the continental slope. Along Line 1 and Line 3 the probes were deployed by alternating between XBTs with XSVs, with 1 km spacing. Two plastic plumes were used for the deployment of the oceanographic probes to launch them as far away as possible away from the ship, with the purpose of avoiding the wire of the expendable probes to get stacked in the airguns or the streamer array. This system is not fully efficient and 10% of the probe wires were broken, however without the plumes, all the probes would have failed. All the successful probes were deployed using the port plume because it was longer and deployed the wires further away from the seismic arrays.