Variations in axial magma lens properties along the East Pacific Rise (9°30′N–10°00′N) from swath 3-D seismic imaging and 1-D waveform inversion

Min Xu1,2, J. Pablo Canales3, Suzanne M. Carbotte4, Helene Carton4, Mladen R. Nedimovic4,5, and John C. Mutter4

1Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts, USA,
2Now at GeoTomo LLC, Houston, Texas, USA, 3Department of Marine Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, 4Department of Marine Geology and Geophysics, Lamont-Doherty Earth Observatory, Palisades, New York, USA, 5Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract We use three-dimensional multistreamer seismic reflection data to investigate variations in axial magma lens (AML) properties along the East Pacific Rise between 9°30′N and 10°00′N. Using partial-offset stacks of P- and S-converted waves reflecting off the top of the AML, we image four 2–4 km long melt-rich sections spaced 5–10 km from each other. One-dimensional waveform inversion indicates that the AML in a melt-rich section is best modeled with a low Vp (2.95–3.23 km/s) and Vs (0.3–1.5 km/s), indicating >70% melt fraction. In contrast, the AML in a melt-poor section requires higher Vp (4.52–4.82 km/s) and Vs (2.0–3.0 km/s), which indicates <40% melt fraction. The thicknesses of the AML are constrained to be 8–32 m and 8–120 m at the melt-rich and -poor sites, respectively. Based on the AML melt-mush segmentation imaged in the area around the 2005–2006 eruption, we infer that the main source of this eruption was a 5 km long section of the AML between 9°48′N and 51′N. The eruption drained most of the melt in this section of the AML, leaving behind a large fraction of connected crystals. We estimate that during the 2005–2006 eruption, a total magma volume of 9–83 × 106 m3 was extracted from the AML, with a maximum of 71 × 106 m3 left unerupted in the crust as dikes. From this, we conclude that an eruption of similar dimensions to the 2005–2006 one would be needed with a frequency of years to decades in order to sustain the long-term average seafloor spreading rate at this location.

1. Introduction

The fast spreading East Pacific Rise (EPR) has been extensively studied during the last 3 decades following the discovery of a bright seismic reflection event beneath the ridge axis, which was interpreted to originate from the roof of an axial magma chamber (AMC) [Herron et al., 1978]. The large number of multidisciplinary studies conducted at the EPR between ~9°N and 10°N led to the establishment of this region as a RIDGE2000 Integrated Study Site (R2K ISS) (http://www.ridge2000.org/). The presence of an AMC along most of this section of the EPR was established in the 1990s [e.g., Detrick, 1991; Detrick et al., 1987; Dunn and Toomey, 1997; Kent et al., 1990, 1993a, 1993b; Mutter et al., 1988; Vera et al., 1990]. The size and shape of this magma body have been the subject of several investigations [Caress et al., 1992; Collier and Singh, 1997, 1998; Detrick et al., 1993, 1987; Harding et al., 1989; Hussenoeder et al., 1996; Kent et al., 1990, 1993a, 1993b; Singh et al., 1998, 1999; Toomey et al., 1990; Vera et al., 1990]. These studies have led to a model in which a thin (~200 m) [e.g., Hussenoeder et al., 1996], narrow (usually 1–2 km wide, with extreme values 0.25 km and 4.15 km [Kent et al., 1993b]) lens or sill of magma 1–2 km below the seafloor [e.g., Detrick et al., 1987] overlies a zone of partial melt in the midcrust surrounded by a broader low-velocity volume (5–10 km wide) extending to the base of the crust and into the uppermost mantle [Dunn et al., 2000; Sinton and Detrick, 1992]. The thickness of the axial magma lens (AML), forming the roof of the AMC, has not been well constrained because of the lack of robust evidence for basal AML reflections in field data. Waveform modeling suggests that the AML is characterized by a decrease in seismic velocity across the boundary between an ~50 m thick solid layer separating the magma chamber from the upper crustal hydrothermal...
fluids and a thin (~30–100 m) sill of melt and crystals [e.g., Collier and Singh, 1997, 1998; Hussenoeder et al., 1996; Singh et al., 1998, 1999]. In this paper we use the terms “melt lens” or “melt sill” indistinguishably to refer to the partially or fully molten AML capping the larger low-velocity, high-temperature zone of the lower crust [e.g., Dunn et al., 2000].

Although the AML is volumetrically small, it is thought to play a key role in the availability and composition of magma at the ridge axis [Sinton and Detrick, 1992]. Understanding the nature and physical state of the AML at the EPR provides key constrains for seafloor eruption processes, the chemistry of the erupted lavas, and the accretion of oceanic crust. However, the internal properties (e.g., crystallinity and distribution of crystals) of the AML and their spatial and temporal variations along the northern EPR are poorly known. The shear properties of the AML are a proxy for its molten state, but can only be inferred from their effect on amplitude versus offset (AVO) behavior of reflected seismic phases, including P-to-S-converted phases. The shear wave velocity (Vs) within the AML has been estimated at a few locations along the EPR with variable results. On the basis of plane wave reflection coefficient modeling of an expanding spread profile at 13°13′N, Harding et al. [1989] inferred the presence of a partially molten AML (i.e., Vs≠0 km/s). In contrast, an AVO analysis of the AML event at 9°30′N led Vera et al. [1990] to suggest the presence of a fully molten sill (i.e., Vs=0 km/s). In some instances, results from the same location obtained by different investigators using the same data are inconsistent with each other. For example, the estimates of AML Vs at EPR 9°39′N range from 0 km/s [Collier and Singh, 1997] to 1.45 km/s [Hussenoeder et al., 1996]. Other than the waveform inversion investigation at the southern EPR (~14°S) [Singh et al., 1998, 1999], none of these studies have used information from shear waves reflected from the AML, which provides better constraints on Vs structure of the lens.

A general conclusion extracted from these studies is that AML properties vary along the global mid-ocean ridge (MOR) system. The different AVO behavior of P- and S-converted waves reflecting of a partially molten sill, and the AVO dependence with melt content allowed Singh et al. [1998] to produce qualitative estimates of the spatial scale of along-axis variations in melt content within the AML inferred from P and S wave partial-offset stacks. This approach has been employed at the southern EPR [Singh et al., 1998], southern Juan de Fuca Ridge (JdFR) [Canales et al., 2006], and the EPR 9°03′N overlapping spreading center (OSC) [Singh et al., 2006]. However, at the EPR R2K ISS, studies of the physical properties of the AML using either partial-offset stacking (except locally at the 9°03′N OSC but only for P waves [Singh et al., 2006]) or waveform inversion using information from both AML-reflected P and S waves have not been attempted.

In summer 2008, we conducted a multistreamer, multichannel seismic (MCS) reflection experiment onboard the R/V Marcus G. Langseth across and along the northern EPR between the Siqueiros and Clipperton transform faults (cruise MGL0812) [Mutter et al., 2009]. The primary goal of cruise MGL0812 was to create an accurate 3-D seismic reflection image of the magmatic-hydrothermal systems within the EPR 9°50′N site by imaging the structure of the AML and shallow oceanic crust at a resolution, geometric accuracy, and scale comparable to the seafloor observations of hydrothermal, biological, and volcanic activities [Mutter et al., 2009]. This new data set has resulted to date in the discovery of off-axis magmatic systems [Canales et al., 2012; Han et al., 2014], the recognition that fine-scale segmentation of the AML coincides with that of the seafloor eruptive fissure zone and limits the lateral magma mixing within the AML [Carbotte et al., 2013], and that changes in 3-D Moho reflection character arise from variations in crustal accretion style and correlate with third-order axial segmentation [Aghaei et al., 2014].

In this study we use this new data set to investigate the spatial variation in melt content and the physical properties of the AML along the northern EPR (~9°30′N–10°N) using P and S wave partial-offset stackings and 1-D waveform inversion methods. Our results show four prominent 2–4 km long melt-rich sections (>70% melt) spaced 5–10 km from each other, with the remaining AML sections having low-to-intermediate melt content (<40%). One of these melt-poor sections is spatially coincident with the center of the 2005–2006 eruption, allowing us to provide new constraints on some of the characteristics of this recent eruption.

2. Geological and Geophysical Backgrounds

The northern EPR is the boundary between the Pacific and Cocos tectonic plates (Figure 1a). The EPR 8°–11°N R2K ISS includes a long first-order ridge-axis segment bounded by the Clipperton transform fault to the north and the Siqueiros transform fault to the south. This segment is one of the best studied portions of the world's MOR system [e.g., Fornari et al., 2012]. The full spreading rate in this area has been approximately 110 mm/yr
during the past 2 Myr [Carbotte and Macdonald, 1992]. The whole segment is believed to be magmatically active, as inferred from morphological observations [Macdonald and Fox, 1988; Scheirer and Macdonald, 1993], the along-axis continuity and seismic brightness of the AML [Detrick et al., 1987; Herron et al., 1980; Kent et al., 1993b; Mutter et al., 1988], the presence of crustal and upper mantle low seismic velocity and high-attenuation zones [Dunn and Toomey, 1997; Dunn et al., 2000; Toomey et al., 1994, 1990, 2007; Wilcock et al., 1992, 1995], and the abundance of high-temperature hydrothermal activity [Haymon et al., 1991].

Figure 1. (a) Shaded bathymetric relief of the East Pacific Rise between Siqueiros and Clipperton fracture zones (EPR, 8°12′N–10°15′N). Bathymetry data are from the Global Multiresolution Topography synthesis [Ryan et al., 2009] available from the Marine Geoscience Data System (http://www.marine-geo.org). (b) Bathymetry map of our study area (EPR, ~9°30′N–10°N). Data are from cruise MGL0812 [Mutter et al., 2009]. Two swath 3-D along-axis seismic boxes (dashed rectangles) were investigated using P and S wave partial-offset stacking: AXS (~9°30′N–10°N) and AXN (~9°51′N–10°10′N). Arrows point to melt-rich sections identified from our analysis (shaded rectangles): four prominent 2–4 km long melt-rich sections are found at ~9°42′N–9°44′N, 9°47′N–9°48′N, 9°51′N–9°52′N, and 9°57′N–9°58′N. Solid lines show the ship tracks of the four along-axis seismic lines used in this study. Blue line marks the extent of 2005–2006 eruption derived from camera tow data [Soule et al., 2007]. White diamonds indicate hydrothermal vents. Yellow stars with numbers show the positions of the two CMP bin supergathers used for 1-D waveform modeling. The area of study shown in Figure 1b is outlined with a black box.
Two second-order segments separated by the 9°03′N OSC (Figure 1a) and multiple-finer-scale segments, including third-order volcanic segments, which are defined by discontinuities in the structure and morphology of the axial topographic high and in the near-axis ridge flank fabric, and fourth-order segments bounded by smaller, more transient ridge axis discontinuities, are identified through multibeam and side-scan sonar imaging [e.g., Haymon et al., 1991; Macdonald and Sempéré, 1984; Scheirer and Macdonald, 1993; White et al., 2006, 2002]. The morphotectonic/structural segmentation of the ridge crest at the fourth-order scale matches remarkably well with the along-strike variability observed in axial hydrothermal activity, and the fourth-order segments appear to be in various stages of magmatic, tectonic, and hydrothermal developments [Haymon et al., 1991].

The EPR 9°50′N area is the first MOR segment with multiple documented eruptions [e.g., Haymon et al., 1993; Soule et al., 2009, 2007; Tolstoy et al., 2006]. The 2005–2006 eruption (Figure 1b) occurred in approximately the same area as an eruption documented in 1991–1992 [Haymon et al., 1993; Rubin et al., 1994; Soule et al., 2007]. Using seafloor imagery collected on camera tows and Alvin dives, Soule et al. [2007] estimated that the 2005–2006 eruption produced ~22 × 10^6 m^3 of lava, 4–5 times larger than the estimated volumes of the 1991–1992 erupted lava flows.

Potential eruptions from melt, accumulated within an AML, depend on a number of parameters including the internal properties of the sill [Singh et al., 1998], which have only been investigated so far in two locations at this EPR section. At 9°48′N, Collier and Singh [1997, 1998] concluded that the ridge is underlain by a thin (30 m) layer with low Vp (2.4 km/s) and Vs (~0 km/s). This layer was interpreted as a magma sill with less than 20 ± 10% crystals, underlain by mostly solid floor. The melt layer was inferred to have been newly emplaced, suggesting that this segment was at the onset of a renewed volcanic stage. At 9°39′N, Collier and Singh [1998] also inferred a high-melt content within the AML based on Vs < 1 km/s, but found that the base of the mostly molten layer was underlain by a velocity gradient interpreted as a downward increase in crystallinity from 20% to 40–90% over just 50 m, suggesting that this segment was at an intermediate stage in its volcanic cycle. However, at this same location and using the same data but a different methodology, Hussenoeder et al. [1996] inferred that the AML at 9°39′N is ~82 m thick with Vp = 3.40 km/s and Vs = 1.45 km/s, suggesting a lower melt content within the AML.

3. Seismic Data Acquisition and Processing

We use a subset of the MGL0812 MCS data set consisting of along-axis swath 3-D MCS data collected along up to four closely spaced axis-parallel sail lines between ~9°30′N and 10°00′N (Figure 1b). Seismic data acquisition parameters for cruise MGL0812 are listed in Table 1; more details of the data acquisition can be found in MGL0812 cruise report [Mutter et al., 2008]. Accurate locations of shots and hydrophone groups were

<table>
<thead>
<tr>
<th>Table 1. Summary of Seismic Data Acquisition Parameters for Cruise MGL0812</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Parameters</td>
</tr>
<tr>
<td>Sources (air gun arrays)</td>
</tr>
<tr>
<td>Number of source arrays: 2 (each with 2 strings)</td>
</tr>
<tr>
<td>Number of guns: 10 per array (1 spare)</td>
</tr>
<tr>
<td>Source separation: 75 m</td>
</tr>
<tr>
<td>Volume: 54 L (3300 in^3) per source</td>
</tr>
<tr>
<td>Shot interval: alternate every 37.5 m</td>
</tr>
<tr>
<td>Source depth: 7.5 m</td>
</tr>
<tr>
<td>Receivers (hydrophone streamers)</td>
</tr>
<tr>
<td>Number: 4</td>
</tr>
<tr>
<td>Spacing: 150 m</td>
</tr>
<tr>
<td>Length: 6000 m</td>
</tr>
<tr>
<td>Number of channels: 468 per streamer</td>
</tr>
<tr>
<td>Channel spacing: 12.5 m</td>
</tr>
<tr>
<td>Receiver depth: 7.5 m (AXIS3 and AXIS2R1)</td>
</tr>
<tr>
<td>10 m (AXIS4 and AXIS3P2)</td>
</tr>
<tr>
<td>Source to nearest channel distance</td>
</tr>
<tr>
<td>200 m</td>
</tr>
<tr>
<td>Data recording</td>
</tr>
<tr>
<td>Sampling interval: 2 ms</td>
</tr>
<tr>
<td>Record length: 8.190 s (AXIS3 and AXIS2R1)</td>
</tr>
<tr>
<td>10.240 s (AXIS4 and AXIS3P2)</td>
</tr>
<tr>
<td>Bolded</td>
</tr>
<tr>
<td>For profiles AXIS4 and AXIS3P2: due to the weather conditions, the depth of the streamers were lowered from 7.5 to 10 m to help alleviate persistent cable swell noise.</td>
</tr>
</tbody>
</table>

3. Seismic Data Acquisition and Processing

We use a subset of the MGL0812 MCS data set consisting of along-axis swath 3-D MCS data collected along up to four closely spaced axis-parallel sail lines between ~9°30′N and 10°00′N (Figure 1b). Seismic data acquisition parameters for cruise MGL0812 are listed in Table 1; more details of the data acquisition can be found in MGL0812 cruise report [Mutter et al., 2008]. Accurate locations of shots and hydrophone groups were
obtained from the ship’s Global Positioning System (GPS), GPS receivers on the tail buoys at the end of the streamers, and acoustic transponders and compasses placed along the streamers. For each multisource, multistreamer sail line and assuming nominal geometry, the experiment configuration [Mutter et al., 2009] resulted in eight common midpoint (CMP) seismic reflection profiles (i.e., in-lines, here oriented parallel to the ridge axis) separated 37.5 m from each other. For improved imaging, the data were binned in 3-D. For this, two overlapping swath 3-D along-axis boxes were created: the southern box AXS includes seismic data from sail lines AXIS2R1, AXIS3, AXIS4, and AXIS3P2 and the northern box AXN includes seismic data from sail lines AXIS2R1, AXIS4, and AXIS3P2 (Figure 1b). The two swath 3-D boxes were then divided into 37.5 m × 6.25 m CMP bins, and the data traces were sorted to corresponding CMP bins for processing (Figure 2).

The detailed seismic processing sequence and the parameters used are listed in Table 2. Seismic processing was designed to enhance stacking of the AML-reflected waves. It consisted of conventional steps [e.g., Yilmaz, 1987] such as trace editing, sorting to CMP bin gathers, band-pass filtering, spherical divergence and surface-consistent amplitude corrections, flexible binning (Figure 3), creating CMP bin supergathers, trace interpolation, normal moveout (NMO) corrections, frequency-wave number (f-k) filtering, stacking, and migration (Table 2).

The f-k filter was designed to improve the signal-to-noise ratio of AML-reflected P and S waves for partial-offset stacking (Figures 4c and 4d) by filtering out seafloor and shallow crustal reflections and diffractions and side echoes from rough seafloor topography that contaminate AML reflections at far offsets.

4. P and S Wave Partial-Offset Stackings
Melt has a strong effect on the crustal shear velocity [Anderson and Spetzler, 1970; Mavko, 1980] and therefore on the AVO behavior of P- ($P_{AML}P$) and S-converted ($P_{AML}S$) waves reflected off a crustal melt lens (Figure 5). The detection of $P_{AML}S$ waves allowed Singh et al. [1998] and Canales et al. [2006] to build seismic reflection images of melt-rich and melt-poor sections of the AML along the southern EPR and JdFR using 2-D MCS data. However, due to streamer feathering, there is an inherent ambiguity in imaging melt-rich and melt-poor sections of an AML with 2-D MCS data using this approach. This is because the AML can be as narrow as just a few hundred meters, and apparent AVO variations could be due to the misalignment of sources and receivers with respect to the center of the AML [Kent et al., 1993a, 1993b] and not necessarily due to true changes in AML physical properties. This problem, which is not an issue when dealing with true 3-D data, can be mitigated using swath 3-D analysis of feathered 2-D data [Nedimović and West, 2003]. In this section, we describe the
Table 2. Data Processing Sequence and Parameters

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Steps and Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace editing</td>
<td>CMP gather, 40-fold bin</td>
</tr>
<tr>
<td>Swath 3-D geometry definition</td>
<td>(bin size: 6.25 m × 37.5 m in along-axis and cross-axis direction, respectively)</td>
</tr>
<tr>
<td></td>
<td>angles of 3-D boxes: AXM NW 8.3323°</td>
</tr>
<tr>
<td></td>
<td>AXN: NW 12.5056°</td>
</tr>
<tr>
<td>Band-pass filtering</td>
<td>5-7-200-225 Hz</td>
</tr>
<tr>
<td>Offset-dependent spherical divergence correction</td>
<td>input velocity source: esp05 [Vera et al., 1990]</td>
</tr>
<tr>
<td>Surface-consistent amplitude correction for shot and channel</td>
<td>offset distribution regularization (cross-line direction): 0.5 × bin size for offsets ≤ 1662 m; 1.5 × bin size for offsets ≥ 4587 m (linear interpolation offsets in between those values) (Figure 3)</td>
</tr>
<tr>
<td>Flexible binning</td>
<td>Resample 4 ms and 7 s long</td>
</tr>
<tr>
<td></td>
<td>Creating CMP supergather (along subline direction)</td>
</tr>
<tr>
<td></td>
<td>band-pass filter 2-7-30-50 Hz combining 24 consecutive CMP gathers and median-stacking constant-offset traces</td>
</tr>
<tr>
<td>Trace interpolation</td>
<td>CMP supergather: regularized 468-fold trace gathers, offset range: 190–6027.5 m</td>
</tr>
<tr>
<td></td>
<td>(with an interval of 12.5 m)</td>
</tr>
<tr>
<td>Frequency wave number (f-k) filtering</td>
<td>NMO (2.0 km/s)</td>
</tr>
<tr>
<td></td>
<td>f-k dip filter (apparent dips exceeding 6.25 ms/trace)</td>
</tr>
<tr>
<td></td>
<td>remove NMO (2.0 km/s)</td>
</tr>
<tr>
<td>P and S wave partial-offset stacking</td>
<td>mute (stretch amount 65%)</td>
</tr>
<tr>
<td></td>
<td>near-offset P wave stack: NMO (2.6 km/s), 0–2 km</td>
</tr>
<tr>
<td></td>
<td>midoffset P wave stack: NMO (2.6 km/s), 2–4 km</td>
</tr>
<tr>
<td></td>
<td>midoffset S wave stack: NMO (2.4 km/s), 2–4 km</td>
</tr>
<tr>
<td>Post-stack time migration</td>
<td>band-pass filter 2-7-30-50 Hz</td>
</tr>
<tr>
<td></td>
<td>top mute at the seafloor</td>
</tr>
<tr>
<td></td>
<td>finite difference algorithm [Lowenthal et al., 1976] (maximum dip 15 ms/trace, layer thickness 40 ms)</td>
</tr>
<tr>
<td>Display</td>
<td>band-pass filter 2-7-30-50 Hz</td>
</tr>
<tr>
<td></td>
<td>energy attribute of trace segment:</td>
</tr>
<tr>
<td></td>
<td>time window for P wave stack: 3.9–4.15 s</td>
</tr>
<tr>
<td></td>
<td>time window for S wave stack: 4.15–4.4 s</td>
</tr>
</tbody>
</table>

Figure 3. Bin fold map for 3-D seismic boxes AXN (a) before and (c) after flexible binning, and AXS (b) before and (d) after flexible binning. The flexible binning is based on offset distribution regularization (cross-line direction) using 0.5 × bin size for offsets ≤ 1662 m, 1.5 × bin size for offsets ≥ 4587 m (linear interpolation offsets in between those values). The nominal bin fold after flexible binning is 40.
application of the P and S wave partial-offset stacking methods with swath 3-D MCS data to qualitatively image melt-rich and melt-poor sections of the AML at the EPR R2K ISS (~9°30′N–10°00′N; Figure 1b).

Figure 4 shows two CMP bin supergathers constructed by combining 12 consecutive CMP gathers from in-line 40 of box AXS and the corresponding f-k filtered supergathers. Clear $P_{AML}P$ waves at ~4.0 s two-way travel time (TWTT) within shot-receiver offsets of ~0–4 km (Figures 4c and 4d). After f-k filtering, CMP bin supergather 356098 also shows a coherent event between 2 and 4 km offsets observed at ~0.2 s below the $P_{AML}P$ waves (Figure 4c) that was difficult to identify in the unfiltered gather (Figure 4a). Based on its travel time and AVO behavior, we interpret this phase as a conversion from an incident P wave to an S wave reflected at the top of the AML and then converted back to a P wave at the seafloor ($P_{AML}S$ waves; Figure 4e). Other possible origins for this event, such as a peg-leg multiple from layer 2A or an S wave conversion at the base of layer 2A, do not predict the observed travel time and AVO behavior with offset.

The comparison between CMP bin supergather 356098 and 354229 shows that the character of the AML-reflected phases vary beneath different sections of the ridge (Figure 4). At CMP bin supergather 354229, the $P_{AML}P$ reflection is a strong event out to at least 4 km range, and there is no detectable $P_{AML}S$ reflection (Figures 4d and 4f), whereas the amplitude of the $P_{AML}P$ reflection at CMP bin supergather 356098 decreases beyond ~2 km range, and there is a strong $P_{AML}S$ reflection with an amplitude comparable to the $P_{AML}P$ reflection present at ~2–4 km offset range (Figures 4c and 4e). Based on the AVO predictions shown

Figure 4. Two contrasting CMP bin supergathers from swath 3-D seismic box AXS. (a) CMP bin supergather 356098. (b) CMP bin supergather 354229. Their corresponding (c–f) frequency-wave number (f-k) filtered gathers are also shown. The AML reflections, $P_{AML}P$ and $P_{AML}S$, are indicated by black arrows. Figures 4e and 4f same as Figures 4c and 4d with predicted $P_{AML}P$ and $P_{AML}S$ travel time curves (solid and dashed black lines, respectively) calculated from velocity model ESP05 [Vera et al., 1990]. TWTT is two-way travel time.
in Figure 5, these qualitative observations point to the presence of a large-melt fraction at CMP bin supergather 356098 and mush at CMP bin supergather 354229.

From the theoretical calculations of the AVO behavior of the AML reflection for melt and mush cases described above (Figure 5), it is clear that the crucial offset range for discriminating between the two representative cases is ~2–4 km. For a melt-rich sill, at these offsets, the amplitude of the P_{AML} waves decreases and eventually reverses polarity, and the amplitude of the S-converted $P_{AML S}$ waves increases. We constructed three partial-offset stacks: (1) 0–2 km offsets and constant NMO velocity (V_{NMO}) of 2.6 km/s that we call "P_{AML} near-offset stack," (2) 2–4 km offsets and $V_{NMO} = 2.6$ km/s that we call "P_{AML} midoffset stack," and (3) 2–4 km offsets and $V_{NMO} = 2.4$ km/s that we call "$P_{AML S}$ midoffset stack."

The resulting P and S wave-migrated stacks of the AML are illustrated in Figures 6a and 6b with one example in-line from each of the two swath 3-D boxes. These vertical sections of the partial-offset stack volumes show along-axis variations in the strength of the near-offset and midoffset P_{AML} reflection, as well as the variations in the presence of the $P_{AML S}$ event, suggesting along-axis variability in the physical properties of the AML. To make use of the full 3-D data contained in the seismic volumes and ensure that the interpretation of the along-axis variability in the P_{AML} and $P_{AML S}$ events is not biased by the choice of a specific in-line, we calculate the seismic energy of each trace within the volume and project it onto the in-line direction (Figures 6c and 6d).

The near-offset P_{AML} reflection is observed at ~4.0–4.1 s TWTT along most of the study area. The midoffset $P_{AML S}$ (~4.2–4.3 s TWTT) is observed along large parts of the profile, but it is strongest at four distinct sections (Figure 6). As expected, the stacked $P_{AML S}$ reflection is strong near CMP bin supergather 356098, and the amplitude of the midoffset P_{AML} reflection is greatly decreased compared to the near offset. The AVO behavior of the AML reflections shown in CMP bin supergather 356098 is used as our criterion to define melt-rich sections in this study. These melt-rich sections are primarily defined by the presence of strong energy in the S wave images (Figures 6c and 6d, third panels). Based on this criterion, we find four prominent 2–4 km melt-rich zones spaced ~5–10 km from each other at ~9°42′N–9°44′N, 9°47′N–9°48′N, 9°51′N–9°52′N, and ~9°57′N–9°58′N (Figures 1b and 6). While other reflections with similar characteristics...
represent at similar depth at other parts of the segment, they are more ambiguous and lack the lateral continuity of the PAML reflection mentioned above, so we will not attempt to interpret them any further.

5. Waveform Inversion

The P and S wave partial-offset stacks (Figure 6) described above provide an efficient way to constrain the length scales of variations in AML properties along a large portion of the ridge. However, they do not provide constraints on the fine-scale physical properties of the AML that produce the observed variations. To this end, we conducted a 1-D waveform inversion of MGL0812 MCS data selected from two locations with contrasting melt content (as inferred from the partial-offset stacks), where the AML is best imaged: CMP 356098 located within a melt-rich section and CMP 354229 located within a melt-poor section at the site of the 2005–2006 eruption near a cluster of hydrothermal vents (Figure 1b).

5.1. The τ/C_0 Transform

The mapping of intercept time-slowness (τ/C_0) seismic data into the frequency (ω) domain is particularly useful for 1-D seismic analysis, since it decomposes the medium response into a series of noninteracting
cylindrical waves [Harding, 1985]. We follow the approach of Korenaga et al. [1997] to transform the time-offset (τ-x) data to the τ – p domain. Incompleteness of field data (finite time, offset, and bandwidth) results in transform artifacts, which must be minimized for successful waveform inversion [Korenaga et al., 1997]. Details of the tests performed to find the appropriate parameters for the τ – p transformation are given by Xu [2012]. Based on those tests, we restrict our analysis to traces within a slowness window from 0.01 to 0.158 s/km (mainly constraining the AML structure) for the 1-D waveform inversion. For p > 0.16 s/km, the transform produces artifacts with slope similar to that of the AML-reflectted phases [Xu, 2012].

Figures 7c and 7d show the results of the τ – p transform of the two CMP bin supergather shown in Figures 7a and 7b, respectively. Thirty-eight τ – p traces with slowness of 0.01–0.158 s/km and a frequency range of 5–30 Hz are used for the following waveform inversions. Because of the relatively small slownesses used in this study, we did not correct for source and receiver directivity effects (which discriminates against waves with large slowness) [e.g., Collier and Singh, 1997].

5.2. Full Waveform Inversion

The full waveform inversion method is described in detail by Kormendi and Dietrich [1991], and further information on the inversion procedure can be found in Collier and Singh [1997], Korenaga et al. [1997], and Minshull et al. [1994]. We give only a brief outline here; more details can be found in Xu [2012]. The waveform inversion scheme was designed to find the 1-D velocity structure that minimizes the misfit between the observed and predicted seismograms in frequency-slowness (ω – p) domain. Synthetic seismograms were calculated using the generalized reflection transmission matrix method of Kennett and Kerry [1979], and the partial derivatives for the conjugate gradient algorithm were calculated from an analytical expression given by Kormendi and Dietrich [1991].

5.3. Source Wavelet

The inversion results are highly sensitive to the input source wavelet. Since we do not have field measurements of the far-field response of the air gun signal for our experiment, the source wavelet used for the inversion was obtained following an indirect approach [Collier and Singh [1997], method 4]. We estimated the source wavelets (Figures 7e and 7f) by averaging 10 ω – p traces at the lowest slowness (i.e., from 0.01 to 0.046 s/km) and then transformed the resulting averaged spectrum back to the τ – p domain.

5.4. Starting Model

The starting model consists of a stack of 8 m thick layers, for which Vp, Vs, density (ρ), and attenuation (Q) are defined. The thickness of 8 m was chosen so as to be less than one quarter of a wavelength for the maximum frequency used in the inversions, which is required for the precise computation of the synthetics [Chapman and Orcutt, 1985]. The limited bandwidth used makes the inversion procedure more stable, but at the expense of limiting the vertical resolving power of the method. For a maximum frequency of 30 Hz, the vertical resolution at the AML is limited to one fourth of the wavelength, which for Vp = 3 km/s is 25 m.

We used initial Vp models (Figures 7g and 7h) obtained from forward modeling of travel times of the seafloor reflection, layers 2A and 2B reflections and refractions, and the AML reflections for both CMP bin supergather (Figures 7a and 7b). Density (ρ) was defined from the initial Vp structures using a Vp-ρ relationship [Carlson and Raskin, 1984], except at the seafloor and within the AML, where densities were set to 2240 kg/m³ [Gilbert and Johnson, 1999] and 2700 kg/m³ [Hoof and Detrick, 1993], respectively. Vs structures were derived from the initial Vp structures assuming a Poisson’s ratio structure as described below.

For CMP bin supergather 356098, Poisson’s ratio was set to be 0.48 for the upper 180 m and 0.29 elsewhere [Christeson et al., 1997, 1996; Hyndman and Drury, 1976] (Figure 7g). The value of 0.29 was chosen to best fit the travel time of the PAML-S reflection. The P wave attenuation quality factor (Qp) was set to 16 in the upper 180 m and 100 below this depth [Christeson et al., 1994] (Figure 7g). The high level of attenuation in the uppermost crust results from the combined effect of frictional, fluid flow, and scattering mechanisms [Christeson et al., 1994; Toksöz et al., 1987; Wilcock et al., 1995].

For CMP bin supergather 354229, Poisson’s ratio was set to be 0.48 for the upper 200 m and 0.29 elsewhere [Christeson et al., 1997, 1996; Hyndman and Drury, 1976] (Figure 7h). To fit the amplitudes of seafloor and AML reflections, Qp was set to 80 in the upper 200 m [Weper and Christensen, 1991] and to 500 below this depth, a value representative of off-axis lower crust [Wilcock et al., 1995] (Figure 7h). These
values are 5 times greater than the values for CMP bin supergather 356098. The reason(s) why data from these two locations require different attenuation structure above the AML are unclear and beyond the scope of this paper. One possibility is that the relatively low attenuation at CMP bin supergather 354229 might be caused by the cooling effect from intense hydrothermal circulation here, since the attenuation
quality factor is strongly dependent on temperature [Kampfmann and Berkhemer, 1985]. The S wave attenuation quality factor (Q_s) was set to half that of the P wave at both locations [e.g., Tompkins and Christensen, 2001].

5.5. Inversion Scheme

The 38 $\tau - \rho$ traces were inverted simultaneously. Therefore, the inverted model is consistent with the data from the range of slownesses modeled and is less likely to be influenced by incoherent noise [Singh et al., 1998]. In this study, the model parameter in the full waveform inversion is V_p; V_s and ρ were not inverted during the inversion procedure. To obtain the preferred V_s structure, we conducted a series of inversions for V_p with different fixed V_s values. The preferred V_p solution, the estimates of V_s within the AML, and the estimates of the sill thickness were obtained through a waveform inversion and forward modeling procedure involving three parts described below and summarized in Figure 8.

Part I: First, we ran a series of inversions to obtain an acceptable solution for V_p. After the iterative inversion converged, we updated V_s and ρ (as described in the previous section) and conducted another inversion for V_p. This procedure was repeated until updating V_s and ρ did not produce any additional convergence in a subsequent inversion. The final results from this step are what we call “stage I V_p models.”

Part II: To constrain V_s within the AML, we conducted another set of inversions as described in Part I using a starting model, the stage I V_p model, resulting from Part I and testing different V_s values within the AML. The final results from this step are what we call “preferred combined V_p and V_s models.”

Figure 8. Schematic flowchart of the 1-D waveform inversion procedure applied in this study. The procedure includes three parts: part I is designed for obtaining an AML V_p model, part II is for estimating the AML V_s, and part III is for estimating the AML thickness.
Part III: In this last part, we constrained the thickness of the low-velocity AML. We conducted a set of forward models modified from the preferred combined V_p and V_s models of Part II and testing different values for the AML thickness. These tests were repeated for several values of V_s within the AML to explore the full parameter space of AML thickness and V_s to assess any trade-off between these parameters.

5.6. Waveform Inversion Results

5.6.1. Part I: Stage I V_p Models

The stage I V_p models obtained from Part I of the inversion scheme as well as the predicted seismograms for CMP bin supergathers 356098 and 354229 are shown in Figures 9a and 9b, respectively. At the melt-rich site...
In order to constrain the upper bound of the AML thickness, we calculated a series of synthetics (Part III; Figure 8) at those frequencies. Based on this, we choose 8 m as our estimate for the lower bound of the AML thickness.

Between 0.0 and 3.0 km/s. This allowed us to explore the full parameter space for both thickness and

Our inversion approach only inverts for the

implies that the AML has a

5.6.3. Part III: Estimate of AML Thickness

The observation of the P_{AML} reflection in the frequency band (5–30 Hz) considered in this study (Figures 4 and 7) implies that the AML has a finite minimum thickness. Our synthetic tests indicate that to be observed in the 5–30 Hz frequency band, the AML has to be at least 8 m thick; thinner structures would be seismically transparent at those frequencies. Based on this, we choose 8 m as our estimate for the lower bound of the AML thickness.

In order to constrain the upper bound of the AML thickness, we calculated a series of synthetics (Part III; Figure 8) using velocity models that were modified versions of the preferred combined V_p and V_s models. The modifications were done by changing the thickness of the layer, where the V_p value is at its minimum (which we call “AML thickness”). Since the vertical resolution of our method is 25 m, we tested the AML thickness values between 0.3 and 1.5 km/s as our ranges of preferred AML models for CMP bin supergather 356098. Figure 9c shows one end-member of this range of preferred models for CMP bin supergather 354229. The model obtained during stage I for this site falls within this range of preferred models; thus, results shown in Figure 9b belong to the family of preferred solutions.

For CMP bin supergather 354229, the RMS misfit shows a different behavior, generally decreasing with increasing V_s, and the best fit is found for $V_S = 2.6$ km/s (Figure 10). The Student’s t tests show that solutions with $V_S \geq 2.0$ km/s are all statistically indistinguishable from each other at the 90% significance level (Figure 10). For these AML models, V_p ranges between 4.52 km/s and 4.82 km/s for $V_S = 2.5$ km/s and 3.0 km/s, respectively. We therefore chose $V_p = 4.52\text{--}4.82$ km/s and $V_s = 2.0\text{--}3.0$ km/s as our ranges of preferred models for CMP bin supergather 354229. The model obtained during stage I for this site falls within this range of models; thus, results shown in Figure 9b belong to the family of preferred solutions.

Figure 10. Results from stage II showing waveform RMS misfit versus

of CMP bin supergather 356098, results from stage I consist of an AML characterized by a tens-of-meters thick low-velocity zone, in which V_p decreases sharply from ~6.41 km/s to 3.35 km/s at 1.44 km depth.

At the melt-poor site of CMP bin supergather 354229, the inverted structure also contains a tens-of-meters thick low-velocity feature at a similar depth (1.41 km), but with a smaller decrease in V_p (from ~6.44 to 4.67 km/s).

The stage I V_p models have an estimated uncertainty of 0.10–0.15 km/s (Figures 9a and 9b), which is valid only if the starting model is close to the global minimum of the misfit function.
Results for CMP bin supergather 356098 (Figure 11a) show that the best fit corresponds to an AML thickness of 24 m (and \(Vs \) between 0.3 and 1.5 km/s). AML thickness of 32 m or larger results in waveform residuals with RMS misfit that are statistically different and larger than those for 24 m. Therefore, at this location, we choose an AML thickness of 8–32 m as our preferred estimate.

For CMP bin supergather 354229, we find that waveforms are equally well fit for a much wider range of AML thickness (and for \(Vs > 2.0 \) km/s) (Figure 11b). We conclude that AML thickness at this location is more weakly constrained, with preferred estimates of 8–120 m.

5.7. Robustness of the Solutions

Investigations at the southern EPR (14°18′–24°S) have shown that there, the melt lens is bounded by a solid roof and a solid floor [Singh et al., 1999]. Our preferred \(V_p \) models (Figure 9) are consistent with these previous results; however, some of the features of these models may be dependent on the initial assumptions or not strongly constrained by the data [e.g., Canales et al., 2006]. Here we investigate the robustness of the structure immediately beneath the melt lens, and its dependence on initial assumptions.

Results for CMP bin supergather 356098 (Figure 11a) show that the best fit corresponds to an AML thickness of 24 m (and \(Vs \) between 0.3 and 1.5 km/s). AML thickness of 32 m or larger results in waveform residuals with RMS misfit that are statistically different and larger than those for 24 m. Therefore, at this location, we choose an AML thickness of 8–32 m as our preferred estimate.

For CMP bin supergather 354229, we find that waveforms are equally well fit for a much wider range of AML thickness (and for \(Vs > 2.0 \) km/s) (Figure 11b). We conclude that AML thickness at this location is more weakly constrained, with preferred estimates of 8–120 m.

5.7. Robustness of the Solutions

Investigations at the southern EPR (14°18′–24°S) have shown that there, the melt lens is bounded by a solid roof and a solid floor [Singh et al., 1999]. Our preferred \(V_p \) models (Figure 9) are consistent with these previous results; however, some of the features of these models may be dependent on the initial assumptions or not strongly constrained by the data [e.g., Canales et al., 2006]. Here we investigate the robustness of the structure immediately beneath the melt lens, and its dependence on initial assumptions.

Results for CMP bin supergather 356098 (Figure 11a) show that the best fit corresponds to an AML thickness of 24 m (and \(Vs \) between 0.3 and 1.5 km/s). AML thickness of 32 m or larger results in waveform residuals with RMS misfit that are statistically different and larger than those for 24 m. Therefore, at this location, we choose an AML thickness of 8–32 m as our preferred estimate.

For CMP bin supergather 354229, we find that waveforms are equally well fit for a much wider range of AML thickness (and for \(Vs > 2.0 \) km/s) (Figure 11b). We conclude that AML thickness at this location is more weakly constrained, with preferred estimates of 8–120 m.

5.7. Robustness of the Solutions

Investigations at the southern EPR (14°18′–24°S) have shown that there, the melt lens is bounded by a solid roof and a solid floor [Singh et al., 1999]. Our preferred \(V_p \) models (Figure 9) are consistent with these previous results; however, some of the features of these models may be dependent on the initial assumptions or not strongly constrained by the data [e.g., Canales et al., 2006]. Here we investigate the robustness of the structure immediately beneath the melt lens, and its dependence on initial assumptions.

Results for CMP bin supergather 356098 (Figure 11a) show that the best fit corresponds to an AML thickness of 24 m (and \(Vs \) between 0.3 and 1.5 km/s). AML thickness of 32 m or larger results in waveform residuals with RMS misfit that are statistically different and larger than those for 24 m. Therefore, at this location, we choose an AML thickness of 8–32 m as our preferred estimate.

For CMP bin supergather 354229, we find that waveforms are equally well fit for a much wider range of AML thickness (and for \(Vs > 2.0 \) km/s) (Figure 11b). We conclude that AML thickness at this location is more weakly constrained, with preferred estimates of 8–120 m.

5.7. Robustness of the Solutions

Investigations at the southern EPR (14°18′–24°S) have shown that there, the melt lens is bounded by a solid roof and a solid floor [Singh et al., 1999]. Our preferred \(V_p \) models (Figure 9) are consistent with these previous results; however, some of the features of these models may be dependent on the initial assumptions or not strongly constrained by the data [e.g., Canales et al., 2006]. Here we investigate the robustness of the structure immediately beneath the melt lens, and its dependence on initial assumptions.
We performed two series of inversions with different constraints to investigate the necessity of having a solid floor. We inverted the data from CMP bin supergathers 356098 (melt-rich case) using initial velocity models modified from the stage I V_p model (Figure 9a); one where V_p is low everywhere beneath the AML (Figure 12a) and one in which the velocity of the melt lens floor increases moderately, simulating a semisolid floor (Figure 12b). In both cases, the new inversions result in models that fit the data with the same degree of accuracy as the stage I model, but that are far from the stage I result. Therefore, we conclude that although the data require an increase in V_p, with respect to the initial velocity model immediately beneath the melt lens, we cannot discriminate between a solid and a semisolid floor. Thus, our tests indicate that the AML is a partially molten thin lens overlaying a more crystalline medium, but the structure of this medium is unconstrained.

6. Discussion

6.1. Nature of the AML as of Summer 2008

6.1.1. Melt Content of the AML

The preferred V_p and V_s structures of the AML obtained from the 1-D waveform inversion procedure provide constraints on the crystallinity of the melt lens. The relationship between elastic parameters and melt fraction is not straightforward, and several authors have addressed this problem from different perspectives [e.g., Dunn et al., 2000; Mainprice, 1997; Taylor and Singh, 2002]. Here we chose the statistical approach derived from effective medium theory, Hashin–Shtrikman bounds [Hashin and Shtrikman, 1963], to compute the upper and lower velocity bounds for a constant melt fraction (Figure 13). The maximum bounds correspond to an end-member model of unconnected melt inclusions in a solid host, and the minimum bounds represent the opposite end-member model of unconnected crystals in a molten host. There are six model parameters used for calculating the Hashin–Shtrikman bounds: V_p, V_s, and ρ for both crystals and pure melt. We tested different combinations of these parameters. For the melt-rich site, melt fraction is primarily constrained by V_s, and the choice of the other parameters do not significantly affect the estimation of melt fraction. For the melt-poor site, a melt fraction estimate is more sensitive to the choice of model parameters, resulting in a melt fraction estimate uncertainty of about 10%. In this study, we chose $V_p = 6.2$ km/s, $V_s = 3.0$ km/s, and $\rho = 2800$ kg/m3 for the crystals and $V_p = 2.9$ km/s, $V_s = 0$ km/s, and $\rho = 2700$ kg/m3 for the pure melt.

At the melt-rich site (CMP bin supergather 356098), the preferred range of V_s values (0.3–1.5 km/s) corresponds to melt fractions of 62–98%, while the preferred range of V_p values (2.95–3.23 km/s) indicates 71–98% melt. In contrast, at the melt-poor site (CMP bin supergather 354229), the larger V_s (2.0–3.0 km/s) suggests 0–41% of melt content, while V_p (4.52–4.82 km/s) is consistent with a magma body with 6–43% melt content (Figure 13). We chose the intersection between the V_p- and V_s-constrained melt fraction ranges as our best estimates of AML melt content: 71–98% at the melt-rich site and 6–41% at the melt-poor site.

These two estimates of melt content within the AML (Figure 13), together with the results from P and S wave partial-offset stacking (Figure 6), provide a more complete picture of the along-axis variation of the internal properties of the AML. Within the melt-rich sections, where both $P_{AML}P$ and $P_{AML}S$ events are well imaged and laterally continuous, the melt fraction in the AML is high (>70%), indicating that it could be nearly fully...
molten. In contrast, within the melt-poor sections, where the P_{AML} event is well imaged, but the P_{AML} event is absent (indicating efficient propagation of shear energy though the AML), the AML is a partially molten solid with an intermediate-to-low melt fraction (<40%).

6.1.2. Spatial Variations of Melt Content Within the AML

Combining the results of qualitatively imaging melt-rich and melt-poor sections from P and S wave partial-offset stacks and the melt content estimates from the seismic velocities obtained from 1-D waveform inversion, we find that over the 60 km long section of the northern EPR studied here (~9°30′–10°00′N), there are four prominent 2–4 km long melt-rich to fully molten sections contained within an otherwise melt-poor AML (Figures 1b and 6). The melt-rich sections are spaced every ~5–10 km along the ridge axis, which is about half of the spacing found for the southern EPR (~15–20 km; [Singh et al., 1998]) and comparable to the fine-scale AML segmentation in this area reported by Carbotte et al. [2013] (5–15 km; Figure 6).

The small-scale, melt-mush segmentation provides insight into the melt delivery, eruption history, hydrothermal activity, and crustal accretion along the spreading axis. The melt-rich sections may correspond to the zones of fresh magma supplied from the mantle and more capable of erupting, or alternatively to hydrothermal activity, and crustal accretion along the spreading axis. The melt-rich sections may have undergone more efficient or longer periods of cooling and crystallization [Singh et al., 1998] or alternatively, they may represent sections of the ridge, where the AML has yet to be replenished after a recent eruption. These hypotheses are discussed in more detail in section 6.2.

Furthermore, these along-strike variations in the AML melt content may be another factor contributing to inhibit—or resulting from limited—large-scale mixing or flow of magma along the ridge axis, as inferred from the geometrical segmentation of the AML and seafloor lava chemistry [Carbotte et al., 2013].

Based on the melt content estimates from the seismic velocities (Figure 13), we suggest that >70% melt fraction could be present in the melt-rich sections and <40% melt fraction in the melt-poor sections. Over this 60 km long section of the EPR (9°30′–10°00′N), melt-poor sections inferred from our partial-offset stacking results occupy >75% of its length. Assuming that the crystallinity in the AML melt-poor sections is too large for supporting eruptions without the occurrence of a new influx of melt from the lower crust/mantle, then only ~25% of the ridge axis at a given time may be capable of producing diking and seafloor eruptions, with the remaining ~75% of the AML contributing primarily to the construction of the lower crust.

6.1.3. Comparisons With Previous Studies

Using data collected in 1985 and 1-D seismic waveform inversion, Collier and Singh [1998] estimated that at 9°48.5′N (their CMP 11050), the AML was characterized by $V_S < 1$ km/s, which led them to infer a high-melt content (~80 ± 10%) at this location. Collier and Singh’s [1998] CMP 11050 is located within one of the melt-poor sections found in our study, just over 1 km to the south from CMP bin supergather 354299, where we obtain $V_S = 2.5–3.0$ km/s.

Farther to the south at 9°39′N, Collier and Singh [1998] also obtained a low value for $V_S (<1$ km/s) and high-melt content at their CMP 10340. However, using the same 1985 data, but a different approach (waveform forward modeling as opposed to waveform inversion), Hussenoeder et al. [1996] obtained $V_S = 1.45$ km/s and therefore inferred a more crystalline AML. Contrasting with these two previous studies, we find that the absence of significant P_{AML} energy in our 2008 data at this latitude (Figure 6d, third panel) suggests higher V_S and therefore low-melt content. One could speculate that the different results obtained with the 1985 and 2008 data sets could reflect temporal variations on decadal time scales of the physical properties of the melt lens. However, given that the same 1985 data at 9°39′N gave different results depending on the modeling approach, a more likely explanation is that the studies of Collier and Singh [1998] and Hussenoeder et al. [1996] have large uncertainties in their melt content estimates due to the limited aperture of their 1985 data (2.4 km long streamer), which prevented them from using P_{AML} events for their analysis, as we have done in our study.

6.1.4. AML Thickness

Here we compare our seismically determined melt lens thicknesses (8–32 and 8–120 m; Figure 11) with estimates from field observations of ophiolites and other seismic studies. The study of ophiolites has played an important role in the development of models for MOR magma chambers [e.g., Casey and Karson, 1981; Greenbaum, 1972; MacLeod and Yauvanacq, 2000; Nicolas et al., 1988, 1993; Pallister and Hopson, 1981].

Arguably, the best analog for fast spreading crust is the Oman ophiolite. Browning [1984] and Browning et al. [1989] showed that the observed cryptic (mineral and chemical) variation of the cumulate layers within the cyclic layered gabbro sequences of the Troodos and Oman ophiolites is best modeled by the formation from
melt sills that are no more than about 100–200 m thick. From structural and petrological mapping of the upper gabbro and dike contact in the Oman ophiolite, MacLeod and Yaouancq [2000] proposed the presence of a 150 m thick fossil melt lens. However, a more recent series of detailed studies of the root zone of the sheeted dike complex and uppermost gabbros in Oman that have mapped a petrological boundary interpreted as formed at a fossil melt lens [Boudier and Nicolas, 2011; Nicolas and Boudier, 2011; Nicolas et al., 2009, 2008] argue that the thickness of the paleomelt lens cannot be inferred, because as the crustal section drifted away from the axial region and the lens solidified, both the floor and roof of the melt lens became essentially a single interface [Nicolas et al., 2009].

The thickness of MOR AMLs has been seismically investigated through waveform modeling and the analysis of the AVO behavior of AML reflections [e.g., Canales et al., 2006; Collier and Singh, 1997; Hussenoeder et al., 1996; Kent et al., 1990; Singh et al., 1998, 1999]. Along the northern EPR near 9°30′N, Kent et al. [1990] derived a lower bound on the thickness of the magma body by reflectivity modeling of the interference effects between a wavelet reflecting off the top and bottom of a thin layer of melt as its thickness decreases. A layer thickness of ~10–50 m is required to explain the lack of a distinct basal reflection in the observed data. However, the absence of this basal reflection can also be explained by a gradual increase in velocities across a transitional lower boundary of a thicker magma body due to a transition from melt to crystal mush. From their waveform modeling studies, Hussenoeder et al. [1996] and Collier and Singh [1997, 1998] also showed the thickness of the sill to be on the order of 30–80 m beneath the EPR at 9°48′N and 9°39′N. Similar results were obtained at the southern EPR [Hussenoeder et al., 1996; Singh et al., 1998, 1999], southern JdFR [Canales et al., 2006], Valu Fa ridge in the Lau Basin [Collier and Sinha, 1990], and the East Scotia Ridge in the South Atlantic [Livermore et al., 1997]. Our determined AML thicknesses (8–32 and 8–120 m) are consistent with the seismically determined thicknesses described above (<100 m), but thinner than estimates from ophiolite observations.

Previous studies based on modeling of refraction data suggested the presence of low velocities immediately above and below the melt sill [Toomey et al., 1990; Vera et al., 1990]. The low velocity just above the AML has been interpreted to be due to a thermal anomaly, and the low velocity below the AML is thought to represent a hot, partially molten mush zone underlying the melt sill [Toomey et al., 1990; Vera et al., 1990]. Our modeling results show that the thin AML is capped by a high Vp solid roof and underlain by a solid floor or semisolid floor (Figures 9 and 12).

An important finding in our study is the observation that at the time of data acquisition in 2008, the section of the AML between 9°48 and 51′N near the center of the 2005–2006 eruption, which coincides with most of the AML segment 5–6 in the nomenclature of Carbotte et al. [2013], does not show high-melt content (despite including the highest-amplitude AML reflection found in our study area; Figures 6b-1 and 6d-1), while to the

Figure 14. A cartoon showing our preferred scenario regarding the relationships between the physical state of the AML before and after the 2005–2006 eruption and hydrothermal activity. (a) The 2005–2006 eruption drained most of the melt in a 5 km long melt-rich section, which had been driving hydrothermal circulation in this area. (b) This left behind a large fraction of connected crystals separating the distal ends of the lens from which melt was not fully drained. The gray line above the AML represents a conductive boundary layer, which separates the hydrothermal circulation and the AML.
As melt poor based on our partial-offset stacking (Figure 6). The eruption drained most of the melt in this 5 km long part of the AML segment 5 as melt poor based on our partial-offset stacking (Figure 6). The eruption drained most of the melt in this 5 km long part of the AML segment 5–6, while the observation of strong S wave reflections off the AML in the partial-offset stacking at 9°51′N and 54°N (AML segment 6–7) and 9°47′N and 48°N (AML segment 4–5) (Figure 15b) indicates that the eruption did not fully drain these AML segments to the north and south (Figure 14b).

On the basis of AML segmentation beneath the eruptive zone and spatial variations in lava geochemistry and the volume of erupted lavas, Carbotte et al. [2013] argue that three segments (4–5, 5–6, and 6–7; Figure 6) contributed to the 2005–2006 eruption. Here we argue that the contribution of the AML segments 4–5 and 6–7 to the eruption was probably minor, on the basis of our observation of melt-rich zones at AML discontinuity no. 6 (and possibly to the north of it; Figure 6) and beneath the southern end of the eruption zone (northern end of segment 4–5; Figure 6).

Our assumption that the main source of the 2005–2006 eruption was located between 9°48′N and 51′N within the AML segment 5–6 is justified by the observations that the bulk of the axial lavas and the greatest abundance of high-flow rate lava morphologies were erupted between 9°48′N and 52′N [Fundis et al., 2010; Soule et al., 2007] and by the geochemical data indicating that this melt lens was actually hotter than the neighboring areas [Goss et al., 2010]. Thus, we consider a first scenario (Figures 14) in which we assume that the main source of the 2005–2006 eruption was the ∼5 km long melt-rich lens extending between 9°48′N and 51′N

(AML segment 5–6 [Carbotte et al., 2013]). We classify the current state (as of 2008) of this section of the AML as melt poor based on our partial-offset stacking (Figure 6). The eruption drained most of the melt in this 5 km long part of the AML segment 5–6, while the observation of strong S wave reflections off the AML in the partial-offset stacking at 9°51′N and 54°N (AML segment 6–7) and 9°47′N and 48°N (AML segment 4–5) (Figure 15b) indicates that the eruption did not fully drain these AML segments to the north and south (Figure 14b).
An alternative scenario is that the physical state of the AML prior to the 2005–2006 eruption was similar to what the post-eruption partial-offset stacks indicate (Figures 6 and 15b). In this scenario, the 5 km long melt-poor section of segment 5–6 beneath the center of the eruption site could be attributed to sustained cooling by the intense hydrothermal activity that is focused in this region, which may prevent the formation of a melt-rich lens as predicted by some numerical models of hydrothermal fluid flow above the AML [Fontaine et al., 2011]. The 2005–2006 eruption would then have been fed by melt accumulated south and north of the hydrothermal field, where hydrothermal cooling may have been less effective. The inference that these two melt sources for the 2005–2006 eruption have a very high melt content just 2 years after the eruption would indicate rapid refilling of the AML following an eruption, or that a small percentage of the AML melt was drained by the eruption.

Of those two hypotheses, we favor the first scenario for the following reasons: (1) The central eruption region (9°48′N and 51°N), which coincides with the AML segment 5–6, contains the thickest, most voluminous and far-traveling lava flows, which erupted from a continuous axial fissure [Carbotte et al., 2013; Fundis et al., 2010; Goss et al., 2010; Soule et al., 2007], indicating that the primary vent for the eruption is within this region. (2) Geochemical data from two recent eruptions (1991–1992 and 2005–2006) show that segments 4–5, 5–6, and 6–7 have erupted lavas of different chemistry in both of the last eruptions, indicating that these three segments contributed to the eruption with lavas delivered vertically to the seafloor [Carbotte et al., 2013]. (3) The documented compositional heterogeneity in the 2005–2006 lavas provides evidence for along-axis variations in the extent of melt differentiation [Goss et al., 2010]. Many of the 2005–2006 lavas from the central segment have the most primitive (highest MgO wt %; Figure 15a) and least fractionated major and trace element compositions of this eruption [Carbotte et al., 2013; Goss et al., 2010], suggesting that the melt within the underlying AML in this region is comparatively hot. These differences in crystallization conditions suggest that melts within the AML are somewhat cooler to the north, perhaps because of a less voluminous melt production in the underlying mantle or a less frequent supply of melt derived from the sub-AML mush zone.

All of the above reasons are consistent with the assumption of scenario 1 that the majority of the lava that erupted on the seafloor during the 2005–2006 eruption was drained from an ~5 km long section between 9°48′N and 51°N, which is now classified as melt-poor based on our analyses. Our results and other observations allow us to put constrains on the volume of magma involved in the eruption (Table 3). For our calculations, we use an average value of 600 m for the AML width, which is reported to be 500–700 m near 9°50′N [Carton et al., 2010; Harding et al., 1993]. We have constrained the thickness of the AML at the melt-rich site to be 8–32 m (Figure 11a). For simplicity, we assume that the average AML thickness along the 2005–2006 eruption site is also 8–32 m. Thus, in the following calculations and discussion, we consider two values for the AML thickness: 10 m and 30 m. Results for the extreme case of an AML thickness of 120 m are listed in Table 3.

Based on the above AML dimensions and assuming that the melt fractions calculated for melt-rich (71–98%) and melt-poor (6–41%) sections in the magma lens represent the melt content in the 5 km long lens (segment 5–6) prior to and after the eruption, respectively, we estimate the ranges of magma volume extracted from this lens of 9.0–27.6 × 10^6 m^3 and 27.0–82.8 × 10^6 m^3, for AML thicknesses of 10 m and 30 m, respectively (Table 3). Using the seafloor extent of the 2005–2006 eruption reported by Soule et al. [2007] and assuming an average flow thickness of 1.5 m [Soule et al., 2007], we estimate that a volume of ~12 × 10^6 m^3 of lava was emplaced on the seafloor between latitudes 9°48′N and 51°N during the 2005–2006

Table 3. Estimates of Melt Volume and 2005–2006 Eruption Parameters

<table>
<thead>
<tr>
<th>th (m)</th>
<th>V (×10^6 m^3)</th>
<th>M (melt) (%)</th>
<th>Mpoor (%)</th>
<th>Vm rich (×10^6 m^3)</th>
<th>Vm poor (×10^6 m^3)</th>
<th>Vext (×10^6 m^3)</th>
<th>Vdike (×10^6 m^3)</th>
<th>Wdike (m)</th>
<th>ΔT (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30</td>
<td>71–98</td>
<td>6–41</td>
<td>21.3–29.4</td>
<td>1.8–12.3</td>
<td>9.0–27.6</td>
<td>15.6–15.6</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>71–98</td>
<td>6–41</td>
<td>63.9–88.2</td>
<td>5.4–36.9</td>
<td>27.0–82.8</td>
<td>15.0–70.8</td>
<td>2.1–10.1</td>
<td>19–92</td>
</tr>
<tr>
<td>120</td>
<td>360</td>
<td>71–98</td>
<td>6–41</td>
<td>255.6–352.8</td>
<td>21.6–147.6</td>
<td>108.0–331.2</td>
<td>96.0–319.2</td>
<td>13.7–45.6</td>
<td>125–415</td>
</tr>
</tbody>
</table>

a: AML thickness.
b: V: volume of AML segment.
c: M: AML melt content.
d: Vm = V• M: volume of melt within AML segment.
e: Vext = Vm rich – Vm poor: volume of melt extracted from AML segment 5–6 during the 2005–2006 eruption (minimum and maximum estimates).
f: Vdike = Vext – Vseafloor: volume of dike emplaced above AML segment 5–6 during the 2005–2006 eruption (minimum and maximum estimates), where Vseafloor = 12 × 10^6 m^3 is the volume of lava emplaced on the seafloor between latitudes 9°48′–51°N during the 2005–2006 eruption.
g: Wdike: dike width (minimum and maximum estimates).
h: ΔT = Wdike/SR: eruption interval (minimum and maximum estimates), where SR = 0.11 m/yr is spreading rate.
eruption. This implies that for an AML thickness of 10 m, a volume of melt of \(<15.6 \times 10^6 \text{ m}^3\) was left in the upper crust as dikes above the AML segment 5–6, while a 30 m thick AML would yield a dike volume of \(15.0–70.8 \times 10^6 \text{ m}^3\). An interesting consequence of this scenario is that the 2005–2006 eruption ceased after 30–92% of the magma available in the AML was drained, which contrasts with the \(<15%\) of magma evacuated from the AML inferred by Soule et al. [2007], who assumed that the eruption was fed uniformly over an 18 km long section of the ridge.

We acknowledge two caveats regarding the estimates of the volume of melt left in the crust discussed above: on one hand, the volumes may be minimum estimates because the 2005–2006 eruption likely involved extraction of melt not only from the shallow AML but also from deeper crustal levels, with \(\sim25%\) perhaps originating in the lower crust [Wanless and Shaw, 2012]. On the other hand, the volumes may be maximum estimates, because we are assuming that the eruption drained the full width of the AML; there is the possibility that only a narrow zone of the AML contributed to the eruption.

Assuming a maximum dike height of 1.4 km (i.e., depth to the AML), and a length of 5 km, then the estimated dike volumes correspond to a dike width of \(<2.2\) m for a 10 m thick AML, which is comparable to the mean dike width (0.5–1.5 m) observed at ophiolites and tectonic windows into recently active spreading ridges [Gudmundsson, 1995; Harper, 1984; Kidd, 1977; Oliver and McAlpine, 1998; Rosencrantz, 1983; Tryggvason, 1994; Umino et al., 2003], or a width of 2.1–10.1 m for a 30 m thick AML (Table 3). While the latter value seems large for a single dike, it could represent the cumulative thickness of several dikes.

The width of the dike can be taken as a measurement of the amount of plate separation accommodated during the 2005–2006 eruption. Therefore, an eruption of similar dimensions to the 2005–2006 one would be needed, on average, every \(<20\) years or 19–92 years (depending on AML thickness; Table 3) in order to sustain the long-term averaged seafloor spreading rate of 110 mm/yr. These estimates are consistent with the time interval between the 1991–1992 and 2005–2006 eruptions, as well as with the previous estimates of yearly to decadal time scale estimates for eruption recurrence intervals at fast spreading ridges [e.g., Perfit and Chadwick, 1998].

7. Conclusions

We have used \(P\) and \(S\) wave partial-offset stacking to infer melt-rich and melt-poor sections along the northern EPR 9°30′N–10°00′N and 1-D waveform inversion to determine the physical properties of the AML at two locations with contrasting melt content. On the basis of the interpretations of the nature of the AML, correlations between melt-mush segmentation, hydrothermal activity and 2005–2006 lava eruption, and spatial variations of melt content within AML, we make the following conclusions:

1. Between 9°30′N and 10°00′N, the melt content of the AML varies along the EPR axis. We found four prominent melt-rich sections \(\sim2–4\) km long and spaced every \(\sim5–10\) km along the ridge axis.
2. The AML is located \(\sim1.4\) km beneath the seafloor. The AML reflections observed in the melt-rich sections are best modeled with a low \(V_p\) (2.95–3.23 km/s) and \(V_s\) (0.3–1.5 km/s) within an 8–32 m thick lens, while in the melt-poor sections, reflections are best modeled with a higher \(V_p\) (4.52–4.82 km/s) and \(V_s\) (2.0–3.0 km/s) within an 8–120 m thick lens.
3. The melt-mush segmentation, together with the melt content estimates obtained based on Hashin–Shtrikman bounds, indicate that the crystallinity of the AML varies along the ridge axis. Within the melt-rich sections, the melt fraction in the AML is estimated to be 71–98%. In contrast, within the melt-poor sections, the AML has a low-to-intermediate melt fraction (6–41%).
4. Over this 60 km long section (9°30′N–10°00′N), the presence of melt-poor sections inferred from partial-offset stacking occupies \(>75\)% of the length. This means that at a given time, \(<25\)% of the ridge axis is capable of producing diking and seafloor eruptions, with the remaining \(>75\)% of the AML contributing primarily to the construction of the lower crust.
5. Our results indicate that the main source of the 2005–2006 eruption was a 5 km long melt-rich section of the AML located between 9°48 and 51°N. The eruption drained most of the melt in this lens, leaving behind a large fraction of connected crystals separating the AML segments to the north and south from which melt was not fully drained.
6. The volume of the 2005–2006 eruption from the 5 km long section has been estimated using the mean values of AML dimensions (600 m wide and 10–30 m thick), and the 30–92% melt fraction decrease.
Our calculations suggests that between 9°48′N and 51′N, a volume of magma ranging between 9 and 83 × 10^6 m^3 was extracted from a 10–30 m thick, 5 km long lens, of which a maximum of 71 × 10^6 m^3 of magma was left unerupted in the crust as dikes no more than 10 m wide.

7. If the width of the dike represents a proxy for the amount of plate separation accommodated during the 2005–2006 eruption, then the long-term average seafloor spreading rate of this ridge segment could be magmatically sustained with the eruptions of similar dimensions occurring every 20 years or less (if the AML is 10 m thick), or with a frequency of a few-to-several decades if the AML is 30 m thick.

Acknowledgments
We are grateful to the captain, crew, technical staff, and scientific party of the R/V Marcus Langseth cruise MGL0812 for their valuable assistance in collecting the MCS data used in this study. We thank R. Stephen, D. Lizarralde, and S.A. Soule for their insightful discussions. Constructive reviews by K.C. Macdonald and an anonymous referee helped improve the original manuscript. This research was supported by NSF grants OCE-0327889 and OCE-0327872 through the RIDGE-2000 program.

References

Mainprice, D. (1997), Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges, Tectonophysics, 279, 161–179.

