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Abstract
Integrated Ocean Drilling Program Expedition 301 was preceded
during 2000 and 2002 by three surveys that helped to delineate
seafloor and basement relief, sediment thickness, and the nature
of ridge-flank hydrothermal conditions and processes on the east-
ern flank of the Juan de Fuca Ridge. These surveys generated
swath map, seismic, and thermal data used to select locations for
primary and secondary drilling targets, building from several de-
cades of earlier work. We show compilations and examples of data
from several characteristic settings in and around the Expedition
301 work area and use these observations to evaluate sedimenta-
tion patterns and thermal conditions in basement. There remain
important unanswered questions in this area concerning fluid cir-
culation within the upper oceanic crust, the magnitude of litho-
spheric heat input, the quantitative significance of advective heat
loss from the crust, and relations between basement relief, sedi-
mentation, and sediment alteration. These questions may be re-
solved through collection of a modest amount of additional data
focusing on a few critical locations.

Setting, planning, and goals
The Endeavour segment of the Juan de Fuca Ridge (JFR) generates
lithosphere a few hundred kilometers west of the Olympic Penin-
sula, Washington State (USA) (Figs. F1, F2). The study area con-
tains structural features common to most ridge flanks: extrusive
igneous basement overlain by sediments, abyssal hill topography,
high-angle faulting, and basement outcrops. The topographic re-
lief of the young oceanic crust produces barriers to turbidites orig-
inating from the continental margin to the east, resulting in the
accumulation of thick sediments that bury the eastern flank of
the JFR (Davis et al., 1992; Underwood et al., 2005). Igneous base-
ment is exposed to the west, where the crust is young, and the
sedimented seafloor to the east is relatively flat, except over base-
ment outcrops. Low-permeability sediment limits advective heat
loss from most of the ridge flank, leading to strong thermal,
chemical, and alteration gradients in igneous basement. Base-
ment relief is dominated by linear ridges and troughs, oriented
subparallel to the spreading center, and was produced mainly by
faulting, variations in magmatic supply at the ridge, and off-axis
volcanism (Davis and Currie, 1993; Karsten et al., 1998, 1986).
Basement relief across this ridge flank tends to be smoother near
                                                                doi:10.2204/iodp.proc.301.102.2005
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In addition, Maurice Ewing expedition EW0207, led
by S. Carbotte (Lamont-Doherty Earth Observatory
of Columbia University), R. Detrick (Woods Hole
Oceanographic Institution), and G. Kent (Scripps In-
stitution of Oceanography), collected multichannel
seismic (MCS) and swath-bathymetry data. This
2002 program included detailed surveys along the
axis of the JFR and a suite of ridge-flank profiles
(~1500 km total length), of which the northernmost
crossed the Expedition 301 work area.

We had originally hoped to complete the ImageFlux
survey in advance of the RetroFlux survey, to allow
time for processing and interpretation of swath-map
and seismic data prior to collection of cores and heat
flow data. The two surveys ended up being run at the
same time, but we were able to coordinate activities
at sea by email, radio, and a hard-copy data swap so
as to avoid having both ships working too closely to-
gether and to take advantage of new discoveries as
the surveys progressed.

Methods
Swath mapping

Prior to Expedition 301 site surveys, vessel-based
swath coverage of this area was limited mainly to iso-
lated tracks across the ridge flank (by ships heading
to/from the active spreading center to the west) and
to small areas containing particular features such as
basement outcrops. The Ridge Multibeam Synthesis
Project (RMBS) compiled data from numerous sur-
veys, but Generic Mapping Tools grid files included
only the near-ridge area (ocean-ridge.ldeo.colum-
bia.edu/general/html/home.html). Additional lines
of swath data in the Expedition 301 field area were ac-
quired during the 1996 Sonne survey (Rosenberger et
al., 2000), but these data had never been merged with
the RMBS synthesis.

Bathymetric data collected by the Sonne in 1996 and
2000 were acquired at typical survey speeds of 5.5–
7.0 kt while shooting seismic profiles and 10–11 kt
during transits between work areas. The hull-
mounted Hydrosweep DS2 system produces usable
data up to two times water depth with a horizontal
resolution on the order of 90 m (at 2700 m depth
and depending on ship’s speed and other factors). To
suppress refraction effects on the outer beams with-
out knowing the local sound velocity profile, the Hy-
drosweep system uses a calibration mode to compare
depth values of the central and outer beams in order
to calculate a mean sound velocity. Using this con-
figuration, residual depth errors are minimized to
values <0.5% of the water depth, on the order of 5–
15 m for typical water depths in this area (Grant and
Schreiber, 1990).
the active spreading center (±100–200 m), and
rougher (±300–700 m) to the east.

Integrated Ocean Drilling Program (IODP) Expedi-
tion 301 is the first part of a two-expedition drilling
program, with associated nondrilling experiments,
intended to assess the nature of fluid pathways in
the crust and the dynamic influences of fluid circula-
tion on this hydrothermally active ridge flank. Expe-
dition 301 and related experiments will help to iden-
tify the distribution of hydrologic properties in the
crust; the extent to which crustal compartments are
connected or isolated (laterally and with depth);
linkages between ridge-flank circulation, alteration,
and geomicrobial processes; and quantitative rela-
tions between seismic and hydrologic properties.
These and other scientific questions, and the meth-
ods used to address them, are discussed elsewhere
(Fisher et al., “Site U1301,” and “Expedition 301
summary” chapters). The main goals of this paper
are to

• Show locations where swath mapping, seismic,
and heat flow data were collected during recent
oceanographic expeditions in preparation for
Expedition 301 and related experiments;

• Present and describe examples of these data that
are characteristic of local and regional hydrother-
mal environments;

• Analyze selected sets of collocated seismic and
thermal data to resolve hydrothermal conditions
in shallow basement; and

• Define important questions that remain to be
resolved in this area.

Rosenberger et al. (2000) and Davis et al. (1997a)
summarized survey results through 1996, and several
other papers have discussed subsets of available data,
including drilling results from Ocean Drilling Pro-
gram (ODP) Leg 168 (e.g., Davis et al., 1992, 1999;
Underwood et al., 2005; Wheat et al., 2000; Wheat
and Mottl, 1994). Readers interested in a detailed
presentation of regional geology and hydrogeology
are directed to these studies and to other references
cited throughout this paper.

There were two oceanographic expeditions in 2000
intended to provide site survey data for Expedition
301. Sonne expedition SO149 (ImageFlux) was led by
V. Spiess, L. Zühlsdorff, and H. Villinger (University
of Bremen, Germany) and collected swath-map, seis-
mic, and heat flow data. Thomas G. Thompson expe-
dition TN116 (RetroFlux) was led by A. Fisher (Uni-
versity of California at Santa Cruz), E.E. Davis
(Pacific Geoscience Center), C.G. Wheat (University
of Alaska Fairbanks), and M. Mottl (University of
Hawaii) and collected mainly heat flow data and sed-
iment cores, with a small amount of swath mapping.
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signed by area to assure consistency in absolute
depths determined during different surveys. Data
were gridded at various resolutions to evaluate reso-
lution and data quality. We experimented with addi-
tional processing to remove artifacts, using band-
pass and other filters, but because the bathymetric
differences across the field area are generally so
small, even modest additional filtering often resulted
in a confounding loss of resolution of key features.
For this reason, we elected to use a composite, 100 m
grid file that includes minimal filtering beyond that
associated with obvious beam artifacts. The compos-
ite bathymetric data set provides almost complete
coverage of a 8000 km2 region on the eastern flank of
the JFR (Fig. F2). Redundancy is particularly high
around First Ridge and Second Ridge, where there is
also the densest coverage of seismic data, as de-
scribed below.

Seismic data
Sonne
Nearly 500 seismic lines, comprising >1 TB of data,
were collected as part of the ImageFlux survey. The
MCS system operated by the University of Bremen
was optimized for high resolution and imaging of
sedimentary structures and layers at a fine scale.
Three different seismic sources were run at the same
time, with results recorded separately along each
line: a small-chamber water gun (0.16 L; 200–1600
Hz; Sodera), a generator-injector (GI) gun (2 × 1.7 L;
30–200 Hz; Sodera), and a GI gun with reduced
chamber volume (2 × 0.4 L; 100–500 Hz). Guns of
larger chamber volume provide greater depth pene-
tration, revealing the larger-scale structural frame-
work within sediments and uppermost basement,
whereas guns with smaller chamber volumes provide
higher resolution, revealing finer details of the upper
200–300 m of sediment.

The three guns were triggered at time intervals of 10–
13 s (depending on water depth), resulting in a shot
distance of ~25–34 m (depending on ship speed) for
the alternating mode operation of each gun type. Us-
ing an optimized trigger scheme, shot spacing is the
same for each gun type and >50% greater than it
would be for only a single gun. Recording time was 3
s for GI gun records (0.25 ms sample rate) and 1.5 s
for water gun records (0.125 ms sample rate), which
is sufficiently long to include the sediment/base-
ment interface reflection. Using a 600 m long Syn-
tron multichannel streamer (plus two 50 m stretch
sections), with 48 recording groups separated by 12.5
m, a common midpoint (CMP) fold of 8–10 was
achieved for CMP spacing of 10 m. This provides an
excellent compromise between trace density, image
quality, and noise reduction. Six remotely controlled
Because the RetroFlux expedition mainly worked
within a few small areas, with the ship held station-
ary during coring and heat flow operations, the Hy-
drosweep system on the Thomas G. Thompson was ac-
tivated only during transits and for a few short,
dedicated swath-map surveys run at 7–10 kt. This re-
sulted in the collection of relatively little additional
data. Operating parameters and data resolution for
RetroFlux bathymetric data are very similar to those
described above for the Sonne. Some additional data
were collected in the Expedition 301 area during the
EW0207 survey, but because these data generally
covered areas that had already been surveyed, no at-
tempt was made to include EW0207 multibeam data
in the composite grid.

After individual file processing, described below, the
data collected during recent Sonne cruises (1996,
2000) and the RetroFlux expedition were combined
with raw multibeam files that had previously been
used to assemble the RMBS synthesis and additional
ridge-flank data archived by researchers with the Na-
tional Oceanographic and Atmospheric Administra-
tion Vents program (A. Bobbitt and C. Fox, pers.
comm., 2000–2001). Earlier generations of Seabeam
and Hydrosweep data were usually navigated by Lo-
ran C and contained systematic positioning errors,
but the quality of bathymetric data was often very
high. The earlier data included multiple crossings of
several interesting features and helped to define tar-
gets for mapping and other work during the Retro-
Flux and ImageFlux surveys.

Processing of bathymetric data began with the pub-
lic-domain software package MBsystem (Caress and
Chayes, 1996). Navigation was corrected, and hy-
drosweep data were ping-edited to flag the outer 5–
10 beams for removal and eliminate a variety of arti-
facts, including abnormal depth values and gradi-
ents. Pronounced “rails” (depth-shifts parallel to the
ship track) were present in much of the data, and in
other places there was an abrupt step, curl-up, or
curl-down, typically affecting the outer beams. The
rail effect was reduced using a tool developed by H.
v. Lom (University of Bremen), and other artifacts
were removed by hand-editing individual beams.
Some swaths also showed subtle roll bias, which was
corrected before file merging. This careful data pro-
cessing was necessary because most bathymetric
structures in the study area (apart from seamounts)
and data artifacts have similar bathymetric scales.
For typical survey depths of 2200–3700 m, the result-
ing usable swath width was generally 4–6 km.

Edited data files from the numerous surveys were
combined to form a single bathymetric grid. Sound
velocity profiles created with the Levitus database
(Caress and Chayes, 1996; Levitus, 1982) were as-
3
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mic grid covering this area. Although the line spac-
ing is not as close as that in the First Ridge area and,
therefore, the data were not processed on a grid, the
data provide useful insights concerning basement
structure in the vicinity of ODP and IODP drill sites.
Groundtruth for GI gun data collected during Sonne
cruise SO149 was provided by modeling reflection
patterns from Leg 168 core-scale density logs, as de-
scribed by Zühlsdorff and Spiess (2001).

Maurice Ewing
MCS data were acquired during the EW0207 cruise
across the Deep Ridge area, where two secondary
drilling targets are located. These data were collected
using a 6 km long, 480 channel Syntron digital
streamer with receiver groups spaced at 12.5 m.
Streamer depth and feathering were monitored with
a mix of 13 depth-controlling and 11 compass-
enhanced DigiCourse birds, plus a GPS receiver on
the tail buoy. A 10 gun, 49.2 L air gun array was used
as the source of acoustic energy with shot-by-dis-
tance at a 37.5 m spacing. Listening time was 10.24 s
with a sampling rate of 2 ms. The recorded signal has
a bandwidth ranging from ~2 to >100 Hz. The nomi-
nal CMP bin spacing is 6.25 m, and the CMP fold is
81.

The prestack processing strategy adopted for the
EW0207 MCS data consisted of

• Standard straight-line CMP bin geometry

• F-K and bandpass (2, 7, 100, and 125 Hz) filtering
to remove the low-frequency cable noise

• Amplitude correction for geometrical spreading

• Surface-consistent minimum phase predictive
deconvolution to balance the spectrum and
remove short period multiples

• Surface-consistent amplitude correction to correct
for anomalous shot and receiver group amplitudes
not related to wave propagation

• Trace editing

• Velocity analysis using the velocity spectrum
method

• Normal moveout and dip moveout corrections to
align signals for stacking

• CMP mute to remove overly stretched data

The prepared prestack data, with and without the au-
tomatic gain control, were then stacked. The post-
stack processing included seafloor mute, primary
multiple mute to reduce migration noise, bandpass
filtering (2, 7, 100, and 125 Hz), and time migration
to collapse diffractions and position the recorded re-
flection events at their true subsurface locations.
birds kept the streamer at 3 m depth (±0.5 m), and
magnetic compass readings allowed for the determi-
nation of the position of each streamer group rela-
tive to the ship’s course, taking variations in
streamer geometry into account. Geographic posi-
tions of each shot location were provided by closely
sampled (1 s) differential Global Positioning System
(GPS) recordings, and custom software calculated re-
ceiver positions and statics and carried out binning.
Standard data processing included editing, bandpass
filtering to eliminate low-frequency noise, correction
for geometrical spreading, stacking, and time migra-
tion. These tasks were completed with the public do-
main package Seismic Un*x (Stockwell, 1997).

Parasound 4 kHz echo-sounding data were collected
on the Sonne during 1996 and 2000 surveys at the
same time that MCS data were acquired. The Para-
sound system is hull-mounted and compensates for
heave, pitch, and roll. Footprint size is only 7% of
water depth, diffraction hyperbolas are suppressed,
and both lateral and vertical resolutions are signifi-
cantly higher in comparison to conventional sedi-
ment profiling systems. Parasound data provide an
extremely high resolution image of the shallowest
tens of meters of sediment.

Two aspects of the ImageFlux seismic survey require
additional discussion. In the First Ridge region (Figs.
F1, F2), an area of ~6.4 km × 2.3 km was covered by
parallel profiles separated by 25 m, including Leg
168 Sites 1030 and 1031 and Expedition 301 alter-
nate Site FR-1. The goal of this exercise was to use
closely spaced lines to extract detailed information
about the three-dimensional geometry of structures
in sediments and basement rocks. The closely spaced
lines are oriented west-northwest, in the direction of
maximum variation of basement structure. Traces of
all two-dimensional (2-D) lines were binned and
stacked based on a predefined grid consisting of cells
that are 10 m wide (in the inline direction) and 25 m
long (in the crossline direction). Thus, common-cell
sorting was applied rather than CMP sorting, and
cell coverage is between 5- and 10-fold. Trace inter-
polation could be avoided because of the small in-
line spacing. However, because of the limited
crossline dimension of the grid, only a 2-D time mi-
gration was applied in the inline direction. Quality
control for processing, and a link to the larger seis-
mic grid on the eastern JFR flank, were provided by a
number of long crossing lines.

In the Second Ridge area, another grid (~5.4 km × 3.6
km) was covered with more widely spaced (100 m)
profiles. This area includes ODP Sites 1026 and 1027
and IODP Site U1301. These profiles were also ori-
ented west-northwest, in the direction of primary
structural dip, and were integrated in the larger seis-
4
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the penetrations. For the other stations, we used lo-
cal thermal conductivity versus depth functions de-
termined from surrounding measurements, as dis-
cussed below. Additional thermal conductivity
measurements were made with a needle-probe sys-
tem on gravity and piston cores recovered during the
survey.

Processing and uncertainties
Heat flow data were processed using methods based
on those described by Villinger and Davis (1987) and
Davis et al. (1997a). Modifications to the approach
include

• Use of local thermal conductivity versus depth
functions for stations that lacked in situ measure-
ments;

• Iterative processing for these stations, with new
conductivity values assigned for each estimate of
penetration depth, followed by recalculation of
equilibrium temperatures;

• Use of the “scatter” parameter (variance normal-
ized by number of thermistors) (Villinger and
Davis, 1987) to guide selection of the number of
thermistors used in each heat flow determination;
and

• Monte Carlo analysis of all penetrations (100–200
realizations in each ensemble), incorporating
uncertainties in thermal conductivity, equilibrium
temperatures, and the thickness of layers having
different thermal conductivities.

Reported heat flow values are means from the Monte
Carlo analyses.

Stein and Fisher (2001) describe the general process-
ing scheme in detail, including estimation of uncer-
tainties, which was implemented after the RetroFlux
expedition using a graphically driven program that
allowed viewing and editing of individual thermistor
records. Interactive thermistor-by-thermistor pro-
cessing was essential because many measurements
included data that did not follow the standard pat-
tern of heating and cooling after probe penetration.
These were most common when making measure-
ments in turbidites using the short, heavy probe, and
resulted from a combination of probe motion and
the extreme frictional heating and high thermal con-
ductivity associated with sandy layers.

Additional uncertainties or systematic errors that
were not estimated by Monte Carlo analysis include
the effects of sedimentation and instrument tilt. Sed-
imentation corrections of 15%–20% may be appro-
priate for individual measurements made where sedi-
ments are thickest (e.g., Davis et al., 1999). We did
not apply sedimentation corrections because this
would make it difficult to compare data collected
Extracting an image of the crustal Layer 2A event
from the EW0207 data requires a somewhat different
processing scheme because this event is not a true re-
flection (Harding et al., 1993). The prestack data
preparation is identical up to the velocity analysis,
which is done on bandpass-filtered (2, 7, 40, and 60
Hz) constant-velocity stacks. When the normal
moveout velocities that best flatten the retrograde
branch of the Layer 2A refraction are chosen, the
data traces with source-receiver offsets from 1500 to
4000 m are stacked. The stacked Layer 2A event is
time-migrated and coherency-filtered. Surgical mute
is used to extract the Layer 2A event, which is
merged with the reflection section to form a final,
composite seismic image.

Heat flow data
Acquisition
RetroFlux heat flow transects during the RetroFlux
expedition were typically colocated along existing or
planned seismic reflection profiles so that we could
merge thermal data with sediment thickness and
basement structure, as discussed later. Because the
ImageFlux and RetroFlux expeditions were at sea at
the same time, we did not always have seismic data
in hand when heat flow transects were run. In some
cases, seismic profiling followed collection of heat
flow data; in a few cases, heat flow data were col-
lected even though we knew that we would not have
colocated seismic data to use for later analyses.

Multipenetration heat flow data were collected using
an 11 thermistor violin-bow heat flow probe with in
situ thermal conductivity capability (Davis et al.,
1997a). Prior attempts to measure heat flow in the
southeastern part of the survey area had been unsuc-
cessful because the heat flow lance would not pene-
trate sandy or lithified sediments. For the RetroFlux
program, we used a conventional weight stand and
3.5 m outrigger lance (sensor spacing = 30 cm), but
also brought out a heavier weight stand to be used
with a 2.0 m outrigger lance (sensor spacing = 15
cm). This modified system operated successfully in
areas where previous attempts failed, but in some in-
stances, the probe continued to settle episodically
during measurement. 

Heat flow transects typically consisted of 15–20 indi-
vidual penetrations spaced 50–500 m apart, with
data collected during a 12–24 h station. Tempera-
tures of the 11 sediment thermistors, bottom sea-
water, and logger electronics, plus pressure, tilt, and
reference resistance, were logged at 10 s intervals and
stored in nonvolatile memory. A subset of the data
was telemetered back to the ship in real time for
monitoring of instrument performance. In situ ther-
mal conductivity was determined during ~60% of
5
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Uncertainties in estimated temperatures at depth
arise from errors in individual heat flow determina-
tions, TWT between the seafloor and uppermost
basement picked from seismic profiles, cumulative
thermal resistance versus traveltime relations, and
the assumption that heat transport within the sedi-
ment section is one dimensional (1-D) and vertical
(Davis et al., 1999). Heat flow uncertainties came
from the Monte Carlo analysis discussed above. We
picked upper and lower limits for the seafloor and
basement reflectors along each profile, based on clar-
ity in the processed seismic data, and used this range
to estimate uncertainties associated with this part of
the analysis. The thermal resistance versus traveltime
relations are well calibrated in areas where we have
drilling data, and we have never found thermal or
geochemical evidence from nonconductive heat
transport through sediments in this region except
where sediments are extremely thin. Total uncertain-
ties in temperatures estimated at the sediment/base-
ment interface and in the location of isotherms at
depth within the sediment section are likely to be
~15%–25%.

The thermal structure within oceanic basement is
less well constrained. Vertical heat flow within upper
basement could range from essentially fully conduc-
tive to fully advective. One of the goals of Expedi-
tion 301 and associated experiments is to determine
the extent to which the upper 300–400 m of base-
ment is isothermal, as a result of vigorous convec-
tion, or transports heat conductively. We will not
know whether conditions in upper basement are ver-
tically conductive or advective until after data are re-
covered from temperature sensors deployed at depth
within long-term observatories (Fisher et al., 2005).
For illustrative purposes, we assume that thermal
conditions in uppermost basement are conductive,
with an effective thermal conductivity of 1.6 W/m·K
(e.g., Becker et al., 1983; Busch et al., 1992; Karato,
1983) and a P-wave velocity of 4500 m/s (e.g., Carl-
son, 1998; Jacobson, 1992; Rohr, 1994).

Selected heat flow transects are compared to 2-D
conductive calculations of heat transport using a fi-
nite-element model (Zyvoloski et al., 1996). The
grids for these models were created using digitized
data from colocated seismic profiles. The goal in cre-
ating these models was to determine the extent to
which local variability in seafloor heat flow might be
attributed to conductive refraction associated with
seafloor and basement relief and the contrast in
basement and sediment thermal properties. Particu-
larly in locations where there is significant basement
relief, the 1-D assumptions associated with down-
ward continuation of near-surface thermal data may
be violated and conductive 2-D models provide a
during different surveys unless a sediment thickness
estimate accompanies each measurement, and this
would not be possible for measurements that are not
colocated with seismic data. In addition, we focused
our studies on local variations in heat flow, associ-
ated mainly with basement relief, that are often
larger than the maximum sedimentation correction.
Accounting for the thermal influence of sedimenta-
tion may be important for assessing the extent to
which heat flow values deviate from lithospheric
conductive models, as discussed later.

The tilt sensor on one of the heat flow instruments
used during the RetroFlux survey failed, but the
mean tilt correction for measurements made with a
working tilt sensor was <2%, suggesting that errors
are likely to be small for penetrations where there are
no tilt data. This is consistent with the very close
spacing between most measurements (50–200 m)
made during a single lowering of the probe from the
ship, which helped to keep the probe hanging verti-
cally immediately prior to penetration into the sea-
floor.

Estimation of temperatures at depth
Heat flow data were continued downward to esti-
mated temperatures within the sediment and upper-
most basement based on the interpretation that heat
transport within the sediment is dominantly vertical
and conductive (Davis et al., 1999). Data used for
this analysis included seismic profiles, thermal con-
ductivities, core-scale seismic velocities, and sedi-
ment thicknesses determined during Leg 168.

Two-way traveltime (TWT) was converted to subsea-
floor depth using velocity data collected from recov-
ered sediments, adjusted to agree with depth to base-
ment determined during drilling (Davis et al., 1999,
1997). The resulting range in apparent sediment seis-
mic velocities is 1500–1700 m/s. Separate relations
were developed for the western and eastern ends of
the Leg 168 drilling transect (z in meters, t in sec-
onds):

z = 817t + 98t2 – 81t3

and

z = 937t – 108t2 + 187t3,

respectively.

A constant sediment velocity was assumed for sedi-
ment thicknesses greater than that encountered dur-
ing drilling (~600 m). The greatest uncertainties in
calculated depths to basement occur where picking
the top of basement from the seismic data is diffi-
cult, as is common when the upper basement surface
is irregular or steeply inclined or the seismic resolu-
tion is otherwise poor.
6
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ment thickness is 500 m, the total height of the edi-
fice above the basaltic crust is 950 m. The next
largest outcrop is Grinnin’ Bare outcrop, 33 km
north-northwest of Grizzly Bare outcrop. Unlike
Grizzly Bare outcrop, which is symmetric and coni-
cal, Grinnin’ Bare outcrop appears to have lost about
one-fourth of its exposed mass along a steeply dip-
ping failure surface on the eastern side of the edifice.
The missing material is not visible at the seafloor
and must have been buried by subsequent sedimen-
tation. Grinnin’ Bare outcrop is 2 km across at its
widest point and rises 300 m above the surrounding
seafloor and 800 m above the surrounding basaltic
crust.

North-northeast of Grizzly Bare outcrop are the three
basement outcrops that originally attracted atten-
tion on this ridge flank: Papa Bare outcrop, Mama
Bare outcrop, and Baby Bare outcrop (Davis et al.,
1992; Mottl et al., 1998; Wheat and Mottl, 1994).
These three outcrops are high points along two adja-
cent, otherwise buried basement ridges, and all are
elongate from the south-southwest to the north-
northeast, subparallel to the underlying structure of
the upper crust and the active spreading center to
the west. Papa Bare outcrop is the largest of the
three, extending 3 km in the long dimension, 1.5 km
across the short dimension, and rising 250 m above
the surrounding sediment. Mama Bare and Baby
Bare outcrops are located above another basement
ridge ~7 km to the west. Mama Bare outcrop is 8 km
west-southwest of Papa Bare outcrop and is 2.0 km
long and 0.7 km wide. It rises 150 m above the sur-
rounding sediments. Baby Bare outcrop is the small-
est of the three outcrops—1.0 km long, 0.5 km wide,
and rising 70 m above the surrounding seafloor.
Baby Bare outcrop is located 15 km south of Mama
Bare outcrop, and Site 1026 is located about halfway
between these two features (Fig. F3). Baby Bare and
Mama Bare outcrops are located on crust dated by
seafloor magnetic anomalies at 3.5 Ma, whereas Papa
Bare outcrop is located on 3.8 Ma seafloor (Becker et
al., 2000; Wilson, 1993).

The relationship between the Second Ridge outcrops
and outcrops to the south is unclear. Grizzly Bare
outcrop is located south-southwest of Baby Bare and
Mama Bare outcrops, along roughly the same head-
ing as that between the latter outcrops and consis-
tent with the strike of basement topography and
magnetic anomalies (Shipboard Scientific Party,
1997a; Wilson, 1993). This suggests that Grizzly
Bare, Baby Bare, and Mama Bare outcrops might be
located on the same buried abyssal hill. Thermal and
chemical data suggest that there is fluid flow in base-
ment between Grizzly Bare and Baby Bare outcrops,
perhaps in part because of enhanced basement per-
useful reference to which observations can be com-
pared to assess the potential significance of hydro-
thermal processes.

Results and discussion
The discussions that follow refer to several regions
that include and extend beyond Leg 168 and Expedi-
tion 301 work areas (Figs. F1, F2). Expedition 301
worked mainly in the Second Ridge area, above the
same buried basement high where Site 1026 is lo-
cated. Secondary drilling sites included the First
Ridge area, close to Sites 1030 and 1031, and the
Deep Ridge area, east of Second Ridge, but these were
never occupied during Expedition 301. We also dis-
cuss (briefly) data from the Southern outcrop area,
located 30–55 km south of the Second Ridge area,
and an additional area of bathymetric highs located
~50 km north of the Second Ridge sites. More exten-
sive presentation and discussion of data from these
two areas will appear elsewhere.

Swath mapping
The regional swath map illustrates several notable
features (Fig. F2). The JFR is clearly visible at the
western edge of the survey area, with the Cobb Off-
set near 47°40′N being particularly prominent. Much
of the seafloor east of the ridge is relatively flat, re-
sulting from a thick accumulation of sediment, but
care must be taken in interpreting the regional map
because the depth scale emphasizes ridge bathyme-
try rather than flank bathymetry. Local maps reveal
considerably greater detail.

One of the most important goals of swath mapping
in this region was to assess whether there were base-
ment outcrops in the survey area in addition to
those mapped previously. Outcrops are hydrogeolog-
ically important because they provide permeable
pathways between basaltic oceanic crust and the
overlying ocean, allowing both recharging and dis-
charging fluids to bypass low-permeability sediments
(e.g., Davis et al., 1992; Fisher et al., 2003a; Johnson
et al., 1993; Villinger et al., 2002). Regional swath
coverage (Fig. F2) confirms that the basement out-
crops in the Second Ridge area are separated from
the next nearest outcrops by tens of kilometers.
There remain gaps in swath coverage north of the
Second Ridge outcrops, and a few small patches to
the west, hopefully to be filled by future surveys.

Grizzly Bare outcrop is the largest outcrop found on
this part of the ridge flank, located near the south-
eastern edge of the survey area (Figs. F2, F3). This
feature is 3.5 km across and rises 450 m above the
surrounding sediment plain. Because regional sedi-
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were crossed by seismic lines during the 1996 Sonne
survey (Rosenberger et al., 2000). There is at least
one additional small bathymetric high that may in-
clude areas of basement exposure at 47°47′N,
128°37′W. Seismic and heat flow data were collected
across this small feature as part of the ImageFlux and
RetroFlux surveys, but no data or samples were col-
lected near the outcrops north of the First Ridge area.

In addition to mapping the seafloor around primary
and secondary drilling targets at the Second Ridge
and First Ridge areas, two additional bathymetric
highs were examined ~50 km north of the Second
Ridge area (Figs. F2, F5). These were discovered fortu-
itously by swath-mapping during a transit by the
Sonne in 1996 and were examined in greater detail
during the 2000 ImageFlux and RetroFlux expedi-
tions. The smaller feature is elongate southwest to
northeast and is known as Zona Bare outcrop. It is 2
km long, 1 km wide, and rises 30–40 m above the
surrounding seafloor. The southwestern edge of the
outcrop is steeper than the other sides, whereas the
top is virtually flat. To the northwest is a larger area
of elevated seafloor known as Rattlesnake Ridge. The
seafloor here is as much as 100 m shallower than the
surrounding area, but the slopes along the sides of
the feature are gentle and there does not seem to be
basement exposed. Considerable time was spent cor-
ing and collecting heat flow data around these two
features during the RetroFlux expedition, but there is
only limited seismic coverage in this area; more de-
tailed analysis of these features will be presented
elsewhere.

Seismic surveys
Second Ridge area
The main seismic grid across the Second Ridge area
consists of numerous parallel lines (average length =
~19 km) that were oriented across structural strike
and are spaced ~2 km apart (Fig. F6). The area be-
tween the southernmost of these lines (GeoB00-192)
and the northernmost line (GeoB00-218) extends
roughly between 47°40′N and 47°52′N and includes
Papa Bare, Mama Bare, and Baby Bare outcrops.
Within a portion of this larger grid, approximately
between Leg 168 Hole 1026C and a location 4.6 km
north, line spacing was decreased to 0.5 km to inves-
tigate a buried basement high known as Wuzza Bare
subcrop (Fig. F3). A grid of closely spaced profiles
was later added in the vicinity of Leg 168 Sites 1026
and 1027 and Site U1301. This grid consists of 26
100 m spaced lines ~5.4 km long. Another set of six
parallel lines, spaced ~600 m apart, was located west
of the main grid to study a buried basement high
called Isita Bare subcrop (Fig. F3). A small number of
seismic lines oriented south-southwest to north-
meability in the along-strike direction (Fisher et al.,
2003a; Wheat et al., 2000). However, seismic lines
run between Grizzly Bare and Baby Bare outcrops
show that the buried ridge below Baby Bare and
Mama Bare outcrops dies out to the south, reappear-
ing immediately north of Grizzly Bare outcrop. In
addition, regional marine magnetic anomalies (Wil-
son, 1993) indicate that Grizzly Bare outcrop may be
located on crust that is 100–200 k.y. younger than
that below Baby Bare and Mama Bare outcrops. The
age of Grizzly Bare outcrop is unknown; Baby Bare
outcrop is thought to have formed from an off-axis
eruption, being as much as 800 k.y. younger than
the crust on which it sits (Becker et al., 2000; Karsten
et al., 1998).

Bathymetric data from the Second Ridge area show
that the seafloor above the ridge is slightly deeper
than nearby areas to the west and east (Fig. F3;
deeper blue in color immediately above the buried
basement ridge). The seafloor continues to deepen to
the south toward Grizzly Bare outcrop (Fig. F3; blue
grades to purple). A sediment transport channel is
readily apparent east of Grizzly Bare outcrop. Its sur-
face expression is considerably less pronounced to
the north, and the channel disappears within the
limits of hydrosweep resolution (~5–10 m) at
~47°30′N. However, the channel can be traced far-
ther to the north in seismic data (described below).

Bathymetric data from the First Ridge area reveal sev-
eral notable features (Fig. F4). The seafloor above the
largest buried basement high is broadly elevated. An-
other basement high, which is less pronounced
bathymetrically, strikes from northwest to southeast
and merges with the first basement high in the
south. A local, triangular topographic high indicates
where turbidities coming in from the north are
trapped between these basement peaks, forming a
thick sediment package (e.g., Spiess et al., 2001;
Spinelli et al., 2004; Underwood et al., 2005). Small
distributary channels are visible on the southwestern
edge of this topographic high. There is a bathymetric
depression on the western flank of the main base-
ment high associated with the location of a small,
buried basement ridge, as revealed by seismic data.
The strike of this feature is oblique to the dominant
structural trend in the First Ridge area.

There are three prominent bathymetric highs north
and northwest of the First Ridge area, at ~48°–
48°10′N (Fig. F4). One is located northeast of the
First Ridge area, along the dominant structural trend
of the buried basement high, and two others are lo-
cated to the west, 11–15 km north of the Leg 168
drilling transect. Careful examination of swath data
and seismic data indicate that these bathymetric
highs are basement outcrops. Two of these features
8
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2005). The channel is defined by prominent seismic
reflectors that extend to ~200 ms below the seafloor
above the local basement topographic low (Fig. F8A,
F8B, F8C, F8D, F8E). The deepest part of the channel
is located approximately halfway between the buried
basement ridge upon which Papa Bare outcrop is lo-
cated and the basement ridge upon which Mama
Bare and Baby Bare outcrops and Sites 1026 and
U1301 are located. The channel deposits are thinner
above the buried basement high around Sites 1026
and U1301, but the channel can be traced 1–2 km
west of the buried basement peak (Fig. F8).

Sediments recovered from near the base of these
channel deposits at Site 1027, 200 ms below the sea-
floor, are ~0.28 m.y. old on the basis of microfossil
stratigraphy (Shipboard Scientific Party, 1997b; Un-
derwood et al., 2005). The strong correlation be-
tween channel geometry and basement relief sug-
gests that the distribution of turbidite sedimentation
in the Second Ridge area has been influenced signifi-
cantly by basement structure. Some influence of
basement relief on sedimentation patterns may con-
tinue today, as indicated by small variations in ba-
thymetry (Fig. F8). Drilling into these coarse, poorly
consolidated sediments is not difficult, but recovery
tends to be low when using rotary coring systems.
The sediments are easily washed away during drilling
and casing operations, which can lead to difficulties
in stabilizing reentry cone and casing systems, as ex-
perienced during both Leg 168 and Expedition 301.

The deepest part of the sediment column in this area
is characterized by lower reflection amplitudes than
the upper part, probably due to seismic attenuation
and the lack of coarse-grained turbidites within the
oldest part of the sediment column (e.g., Shipboard
Scientific Party, 1997b; Underwood et al., 2005).
Normal growth faults showing upwardly decreasing
offsets are commonly observed in seismic images
from this area (Fig. F8). The nature of off-axis tec-
tonic activity, and its influence on sediment defor-
mation around Second Ridge, are currently being in-
vestigated.

Wuzza Bare subcrop is located southwest of Papa
Bare outcrop and is covered by a few tens of meters
of sediment, much like Isita Bare subcrop to the west
(Figs. F3, F7, F8G). Basement at Wuzza Bare subcrop
comes closest to the sediment surface on Line
GeoB00-208 (Fig. F8G). On the same line, Parasound
data show the most pronounced expression in sub-
surface reflectivity (Fig. F8G). An acoustic “washout”
zone of ~200 m width is observed ~10 m below sea-
floor but does not reach the surface as a coherent
unit. A similar feature is observed on parallel line
GeoB00-205, 200 m to the north, but the top of the
washout is 10–20 m deeper. This suggests that the
northeast were run as well, the most important of
which are GeoB00-490, close to drill sites above the
peak of the buried basement ridge, and GeoB00-459,
connecting Baby Bare and Mama Bare outcrops to
newly recognized Zona Bare outcrop.

The main goal of the site survey at Second Ridge was
to map basement morphology to allow for a more
complete geological interpretation and better selec-
tion of locations for IODP drilling. A basement relief
map created by interpolation between basement
picks from the seismic data shows several parallel
buried basement ridges and troughs, one of which
connects Baby Bare and Mama Bare outcrops and,
possibly, Zona Bare outcrop to the north (Fig. F7B). A
more detailed basement map (Fig. F7C) based on the
grid of the most closely spaced seismic lines indi-
cates that the ridge in the vicinity of Sites 1026 and
U1301 splits into two parts with a small depression
in between. Sites 1026 and U1301 are located on the
eastern part of the ridge, where basement elevations
are greatest. Basement elevations around the drill
sites are considerably lower than elevations north
and south along the ridge.

Baby Bare and Mama Bare outcrops are volcanic con-
structions built on top of a ridge-flank abyssal hill
(Becker et al., 2000). The northern part of the base-
ment ridge, including Mama Bare outcrop, is 150–
200 m higher in elevation than the shallower part.
The peak of the basement ridge plunges toward the
south just south of Mama Bare outcrop; the base-
ment slope becomes gentler across Sites 1026 and
U1301. Baby Bare outcrop is located at the southern
edge of a region characterized by very high basement
relief. The expression of the abyssal hill is more sub-
dued south of Baby Bare outcrop. The relatively flat
summit and low elevation of the buried basement
ridge around Sites 1026 and U1301 suggest that they
are located beyond the limits of volcanic construc-
tion that created Mama Bare and Baby Bare outcrops
(Fig. F3). 

The deepest band of coherent reflections in seismic
lines across the Second Ridge area mark the sedi-
ment/basement interface (Fig. F8). Basement mor-
phology is very similar between Line GeoB00-483, at
the northern end of the area of dense coverage on
Second Ridge, and Line GeoB00-466, to the southern
end of this area, crossing Site U1301 (Figs. F6, F8A,
F8B, F8C, F8D, F8E). This consistency is also appar-
ent in the basement relief map (Fig. F7) and in cross-
ing Line GeoB00-490 (Figs. F6, F8F).

The upper part of the sediment section is dominated
by a large sediment transport channel, known from
drilling experience at Sites 1026, 1027, and U1301 to
be filled mainly with sandy turbidites transported
from the north (Davis et al., 1997; Underwood et al.,
9
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can be traced across the ridge. The layers are folded,
fractured, or faulted and show vertical offsets above
the basement peak. The folding and faulting seen
within the sediments in this area are much less pro-
nounced than the folding and faulting found at the
southern end of the dense profile grid, where the
presence of two buried basement highs results in
greater deformation (Fig. F10A).

Layer inclination at the southern edge of the dense
seismic grid is larger than that to the north, and ver-
tical offsets of individual horizons are also greater.
There is a transition between the northern and
southern parts of the dense seismic grid where the
basement ridge splits into two parts (Fig. F10B,
F10C). The continuity of some layers suggests that
overspilling occurs across the basement high (i.e.,
layers associated with turbidites coming from one
side of the ridge thin out on the other side with in-
creasing distance from the ridge). The stratigraphic
pattern of turbiditic sedimentation across the buried
basement highs is complex and warrants greater
study.

Narrow zones of decreased reflection amplitudes
(washouts) are observed in many profiles across the
First Ridge area (Fig. F10). These washouts are most
pronounced in the high-resolution Parasound data
but are also present in GI gun data (Zühlsdorff et al.,
1999). Mapping on the basis of Parasound data re-
vealed that zones of lower reflectivity form a coher-
ent pattern that can be traced along much of the
buried basement high. Comparison of the Parasound
and GI gun data further shows that zones of de-
creased amplitudes are well correlated with local
basement peaks or related to pervasive distortion or
disruptions of sedimentary layering (Zühlsdorff and
Spiess, submitted). As in the Second Ridge area, the
correlation on seismic profiles between these distinct
sedimentary features and underlying basement relief
suggests that there is a strong control of basement
structure on sedimentary processes. Other studies
have explored possible connections to fluid seepage,
local lithologic variability, and postdepositional de-
formation (Giambalvo et al., 2000; Spinelli et al.,
2004; Zühlsdorff and Spiess, 2001, submitted; Zühls-
dorff et al., 1999). It is possible that similar patterns
in the seismic profiles result from different causes,
but the occurrence of these features across a broad
geographic area suggest that they may result from
common mechanisms. Future studies in this area
may address this issue through additional measure-
ments and sampling.

Southern outcrop area
At the southeastern edge of the survey area, seismic
lines approach and cross Grizzly Bare and Grinnin’
center of the anomaly in Parasound reflectivity (and
probably the center of the basement high) may be
located close to Line GeoB00-208. This interpreta-
tion is consistent with heat flow data collected along
both of these seismic lines, as discussed later.

A thin veneer of acoustically transparent sediments
is seen in Parasound profiles crossing this area (Fig.
F8G). At Wuzza Bare subcrop and to the east, this
layer may be <1 m thick, but it thickens westward to
~2 m at 1.5 km distance from the peak of the buried
basement high (Fig. F8G). The veneer appears to be
thickest within the large sediment transport channel
described above, and it may represent the last stage
of localized sediment distribution in this area, fol-
lowing nearly complete infilling of the original
bathymetric (basement) low.

First Ridge area
Parallel seismic lines across strike in the First Ridge
area cover a region between 47°47′N and 47°57′N,
with the closest lines being only 25 m apart (Figs. F4,
F9). Five additional lines were shot along strike, two
of them extending to the southern end of First Ridge
survey area. The seafloor across the First Ridge area is
relatively smooth compared to the rugged basement
below (Fig. F10). Although relief is not truly 2-D,
structural variations on scales of a few tens of meters
(at both the seafloor and at the sediment/basement
interface) tend to occur across strike (northwest–
southeast) rather than along strike (northeast–south-
west). The data suggest that the First Ridge area can
be roughly divided into three parts: northern and
southern parts with moderate basement topography
(Fig. F10B, F10C, F10D, F10F) and a center part be-
tween Site 1030 and a location ~800 m south of Site
1031, where basement is rougher (Fig. F10E). Seismic
data in the southern part show a second buried ridge
that strikes southeast and eventually merges with
main basement high in the south. Turbiditic sedi-
ments coming in from the north appear to be
trapped between the two ridges, forming a local to-
pographic high (Fig. F10F). The dense grid of seismic
profiles, located in the northern part of the First
Ridge area, reveals a third buried basement high that
is smaller and slightly oblique to the dominant base-
ment trend. The seafloor between the buried ridges
shows a linear depression at the western flank of the
main basement high (Fig. F10A, F10B, F10C, F10D,
F10E).

The area covered by the densest seismic grid can be
divided into three smaller parts. At the northern
end, the basement high is characterized by a single
peak structure (Fig. F10D, F10E). Older sedimentary
layers are clearly separated by the basement ridge,
whereas the turbidites associated with younger layers
10
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possibly suggesting growth faulting caused by long-
term slip within basement. The interface between
the sediments and igneous basement has the stron-
gest acoustic impedance, although this is not always
evident in the reflection image because of the ap-
plied automatic gain control and because, where the
basement topography is rough, much of the acoustic
energy is scattered and not returned. A Layer 2A
event, found ~200 ms below the top of the igneous
basement, is imaged across part of this area. Based on
estimates of upper crustal P-wave velocities from
wireline logs at Site U1301 during Expedition 301,
this event corresponds to a subbasement depth of
~500 m, roughly consistent with earlier interpreta-
tions based on regional MCS data (Rohr, 1994).

Heat flow data
Regional values and references for subsequent 
analyses
Researchers have made ~1700 multipenetration heat
flow measurements on 0.1–5.0 Ma seafloor on the
eastern flank of the JFR since 1978, with most of
these measurements colocated along seismic reflec-
tion profiles (Fig. F2). The 2000 RetroFlux program
included acquisition of 437 heat flow values. All of
the multipenetration measurements made in this re-
gion suggest that conditions within shallow sedi-
ments are dominantly conductive. Submersible mea-
surements made on Baby Bare outcrop (Becker et al.,
2000; Wheat et al., 2004) are excluded from the to-
tals cited above, and from the following presentation
and discussion, because those measurements are in-
fluenced strongly by local patterns of fluid and heat
transport associated with the basaltic edifice.

Measurements made away from the hydrothermal
influence of outcrops and basement relief allow as-
sessment of the “background” thermal state of the
upper oceanic crust. Standard lithospheric cooling
models generally give a (time)–1/2 relationship be-
tween heat flow and plate age (e.g., Davis and Lister,
1974; Parsons and Sclater, 1977; Stein and Stein,
1994). These models were calibrated mainly using
bathymetric data and secondarily using thermal
data; thermal data from young seafloor were ex-
cluded because of the confounding influence of hy-
drothermal circulation. Global data compilations
tend to exhibit considerable variability, particularly
at young ages, and this is generally attributed to hy-
drothermal circulation. Circulation can advectively
mine heat from the crust but can also redistribute
heat locally in basement even if there is little or no
advective heat loss. The ~1700 heat flow measure-
ments presented in this compilation are not uni-
formly distributed (Figs. F2, F3, F4, F5); most data
have been collected near features of hydrogeologic
Bare outcrops. These seismic lines are 37–56 km long
and separated by 6–11 km. In addition to parallel
lines oriented across strike, two long crossing lines
were run, forming a large triangle with Grizzly Bare
outcrop at the apex to the south and Grinnin’ Bare
outcrop at the northwestern corner (Figs. F2, F3). As
a result, both outcrops were covered by at least three
crossing lines. No Expedition 301 drilling was
planned in the Southern outcrop area, so we discuss
only general mapping and seismic results in this
area. Part of one seismic line is shown in the discus-
sion of heat flow results.

Grizzly Bare outcrop is circular in plan view from its
base ~500 m below the sediment surface and up to
its summit. This seamount rises >600 ms TWT (~450
m) above the surrounding sediments. Significant re-
flection energy is observed on top of Grizzly Bare
outcrop in Parasound data, and there may be a thin
cap of hemipelagic or pelagic sediment, as seen
above Baby Bare outcrop to the north (Becker et al.,
2000).

Two large sediment transport channels are observed
at the seafloor in this area, a narrower one passing
east of Grizzly Bare outcrop (clearly visible on Fig.
F3) and a broader one passing between Grizzly Bare
and Grinnin’ Bare outcrops and trending to the
southwest. Both of these channels may extend from
far to the north across the survey area, based on cor-
relations between adjacent seismic profiles. The east-
ernmost channel has a more pronounced seafloor
expression south of 47°30′N and appears to be the
southward continuation of the large filled channel
observed at Second Ridge that passes across Site 1027
(Figs. F3, F8). The westernmost channel may pass
west of the Second Ridge area, explaining why it is
not observed in seismic lines from that region.

Deep Ridge area
Seismic reflection images formed by processing MCS
data collected on the EW0207 expedition were used
to select locations for the Deep Ridge sites, ~110–140
km east of the active spreading center (Figs. F2, F11).
Both Deep Ridge sites are located on basement highs
to minimize drilling time to basement and because
basement highs in this region tend to be overpres-
sured and thus may eventually provide good base-
ment fluid and microbiological samples once thick
sediments are penetrated.

The thickness of the sedimentary cover in the Deep
Ridge area varies from 750 to >1000 m (Fig. F11). A
series of small-throw normal faults are imaged
within the sediment section, possibly indicating dif-
ferential compaction or recent tectonic activity out-
side the axial region. Fault offsets gradually diminish
upsection with sediment age, from older to younger,
11
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data to exclude all values that are (1) not colocated
with seismic data that image basement or (2) located
within 2 km of significant basement relief, including
outcrops. The remaining 300 values come from loca-
tions extending across nearly 60 km from north of
Mama Bare outcrop to just north of Grizzly Bare out-
crop (Fig. F3). The filtered data show a remarkably
narrow Gaussian distribution (Fig. F12B), as might
be expected if variations in heat flow result mainly
from conductive refraction and local redistribution
of heat by hydrothermal circulation. The mean of
the filtered values is 181 ± 16 mW/m2.

Even if one assumes the lowest standard lithospheric
reference of 477 × (age)–1/2 (Parsons and Sclater,
1977), a value of 251–259 mW/m2 is predicted for
3.5 ± 0.1 Ma seafloor and other reference curves sug-
gest lithospheric values as great as 277 mW/m2 (e.g.,
Stein and Stein, 1994). The typical sediment thick-
ness associated with the 300 filtered values is 500–
600 ms, equivalent to 450–550 m, requiring a sedi-
mentation correction of 15%–16% (Davis et al.,
1999), but this correction brings the filtered mean
up to only ~215 mW/m2, a deviation from the refer-
ence curves of 15%–20%. This result differs from
that determined across Sites 1026 and 1027 by Davis
et al. (1999); the present analysis suggests that the
transect across Sites 1026 and 1027 is somewhat
“warmer” than most of the seafloor having a similar
age in this area.

The discrepancy between the filtered, sediment-cor-
rected, mean heat flow on 3.5 ± 0.1 Ma seafloor in
this area (~215 mW/m2) and that predicted by stan-
dard lithospheric cooling models (~250–280 mW/
m2) is greater than uncertainties associated with ei-
ther the heat flow measurements or with sedimenta-
tion or other reasonable corrections. There are sev-
eral possible explanations, none of which is
completely satisfying. One possibility is that the
lithospheric cooling curve appropriate for 3.5 ± 0.1
Ma seafloor on this ridge flank falls below standard
global models by 15%–20%. Although we might not
be surprised to find regional differences in litho-
spheric cooling trends (and this might help to ex-
plain some of the variability seen in global compila-
tions), the possibility of sampling bias or advective
heat loss from basement cannot be dismissed.

A second explanation is that the filtered values do
not represent mean conductive conditions but show
the influence of ~15%–20% advective heat loss. The
problem with this explanation is that there are very
few basement outcrops in this area, and driving
forces are much too small to move significant fluxes
of crustal fluid through thick sediments overlying
basement (e.g., Fisher et al., 2003a; Giambalvo et al.,
2000; Spinelli et al., 2004; Wheat and Mottl, 1994).
interest, including areas close to buried and exposed
basement highs. Given this bias, it is not possible to
determine unambiguously either the lithospheric
heat input across this ridge flank or the magnitude
of local and regional anomalies associated with ad-
vection. Nevertheless, this young, heavily sedi-
mented ridge flank has the greatest density of high-
quality multipenetration heat flow measurements in
the world, and it is worth considering what the data
may indicate about both regional heat input and the
extent of thermal anomalies.

A histogram of multipenetration heat flow measure-
ments across this area, including seafloor aged 0.1–
5.0 Ma, shows what appears to be a Poisson distribu-
tion, with a mode at ~200 mW/m2 and a long tail ex-
tending to values ~4 W/m2 (Fig. F12A). The highest
values are associated with local basement highs,
some of which are buried and some of which pene-
trate the sediment as outcrops, and the lowest values
are generally found close to areas having extensive
basement exposure, where fluid recharge is thought
to occur (e.g., Davis et al., 1992; Fisher et al., 2003a;
Wheat and Mottl, 1994).

Davis et al. (1999) showed a long transect of seismic
data and calculated heat flow across this ridge flank,
extending from 20 to 100 km east of the spreading
center and passing through or near Leg 168 drilling
sites. Observed and calculated heat flow rises rapidly
from west to east along the western 20 km of this
transect, across a hydrothermal transition (HT) area
(Fig. F4), where thermal conditions respond to in-
creasing sediment thickness and associated hydro-
geologic isolation of the basement aquifer. Despite
considerable local variability, the rest of the calcu-
lated heat flow profile tends to follow standard litho-
spheric cooling curves. The calculated heat flow at
the eastern end of the transect, across Sites 1026 and
1027, varies locally as a function of depth to base-
ment but is typically ~250–260 mW/m2 after correct-
ing for sedimentation effects (fig. 10 from Davis et
al., 1999).

The current compilation allows examination of heat
flow north and south of the Leg 168 transect. We fo-
cused this effort on the Second Ridge area, where
there is the greatest distribution of high-quality,
colocated heat flow and seismic data across similarly
aged seafloor. There are distinct, local thermal anom-
alies associated with both discharging and recharg-
ing outcrops in this area (e.g., Davis et al., 1992;
Fisher et al., 2003a; Thomson et al., 1995; Wheat et
al., 2004), but their influences appear to extend only
a few kilometers from individual basement features.

In order to determine the background heat flow for
this part of the ridge flank, we examined measure-
ments on 3.5 ± 0.1 Ma seafloor and hand-filtered the
12
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of 180 mW/m2 as a boundary condition at the base
of finite-element models. For the First Ridge and
other areas closer to the active spreading center to
the west, we use a conventional lithospheric cooling
curve having the form

q (mW/m2) = 500 × [age]–1/2 (Ma).

This is justified in younger areas where deviations
from lithospheric cooling curves are large; rebound
from cooling at the ridge may be incomplete (e.g.,
Fisher, 2003), and crustal heat extraction is clearly
dominated by advection. Because they are so clearly
influenced by advective heat loss, it is unlikely that
observations from these younger areas will ever be
used to constrain lithospheric cooling curves.

Example heat flow profiles
In this section, we show examples of colocated heat
flow and seismic profiles that illustrate characteris-
tics typical of several environments on this ridge
flank, beginning with the near-axis area and then
moving to older sites. In each of the associated fig-
ures, we show three panels. The top panel shows
measured heat flow and values calculated using con-
ductive, 2-D numerical models based on the geome-
tries and crustal properties indicated by survey and
drilling data. Because these models do not include
hydrothermal circulation, differences between basal
heat input and output at the seafloor result entirely
from conductive refraction as a result of basement
and seafloor relief and variations in thermal proper-
ties. This approach is conceptually similar to that
used by Davis et al. (1999), except that it takes into
account 2-D (nonvertical) heat conduction and uses
a heat flow (rather than constant temperature) lower
boundary condition. The middle panels show upper-
most basement temperatures calculated by down-
ward continuation of seafloor heat flow values, as-
suming dominantly vertical heat conduction. These
calculations include uncertainty bars based on the
accumulation of potential errors, as discussed earlier.
Upper basement temperatures calculated with the 2-
D conductive models are also shown. The lower pan-
els are displays of seismic data used to generate the
other parts of the figures, with superimposed iso-
therms.

Three profiles illustrate characteristic features on
0.1–1.5 Ma seafloor close to the active spreading cen-
ter, from north to south across the HT and First
Ridge areas (profile locations are shown in Fig. F4).
Figure F13 shows heat flow along seismic Line
950802g in the northern HT area. Basement is gener-
ally flat below ~180 m of sediment, and seafloor ele-
vation varies by <10–20 m. Heat flow is 202–240
mW/m2, ~50% of that predicted by standard litho-
Examination of thermal transects near both recharg-
ing and discharging basement outcrops show that
typical upper basement temperatures are ~65°C
within a few kilometers of the outcrops. It is this
basement temperature and the typical sediment
thickness, accumulation rate, and properties in the
area that define the characteristic heat flow of ~180
mW/m2. The total heat output of Baby Bare outcrop
is 1–3 MW (Mottl et al., 1998; Thomson et al., 1995;
Wheat et al., 2004); this much heat could be ac-
counted for by suppressing seafloor heat flow by 40
mW/m2 to a radial distance of 4–5 km from the out-
crop, but low values extend far beyond this distance.

Other areas where seafloor heat flow is suppressed by
15%–20% as a result of lateral advection in basement
(requiring fluid flow rates on the order of meters per
year or more) typically show spatial trends related to
patterns of fluid flow: lower values are found in areas
of recharge (or deepening basement) and higher val-
ues are found in areas of discharge (or shoaling base-
ment) (e.g., Davis et al., 1999; Fisher et al., 2003b;
Langseth and Herman, 1981). In the filtered data set
from this area, there is no spatial trend to the data. If
the observed mean of ~180 mW/m2 results from ad-
vective extraction of heat from basement, this would
have to occur through a mechanism that extracts
heat remarkably evenly at distances ≥10 km from
points of recharge or discharge.

A final explanation for the low background heat
flow value is that there is a bias in data locations to-
ward lower values. If anything, there is a bias in mea-
surements toward higher values because basement
highs are common targets within the survey area
and isothermality of shallow basement tends to in-
crease heat flow above these features. The data set
was filtered specifically to avoid areas having signifi-
cant basement topography, either local highs or
lows. We expanded the filter to exclude additional
areas within 4 km of the nearest basement high, re-
ducing the number of filtered measurements to 70,
and calculated essentially the same result. Even areas
that are 10 km from the nearest known basement
high are consistent with a background value of ~180
mW/m2, sedimentation corrected to ~215 mW/m2. It
will be challenging to resolve this conundrum given
the available data because one must assume a refer-
ence in order to quantify the magnitude of a thermal
anomaly. It would be ideal to collect additional ther-
mal data from 3.4–3.6 Ma seafloor in this region at
locations tens of kilometers from outcrops—for ex-
ample between the Second Ridge area and the south-
ern outcrops (Fig. F3), where there are high-quality
seismic data and little basement relief.

For the purposes of subsequent analyses in the Sec-
ond Ridge area, we use a background heat flow value
13
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greater than calculated numerically with a 2-D con-
ductive model, suggesting that heat is redistributed
locally by fluid circulation in basement.

Three additional heat flow and seismic transects il-
lustrate characteristic conditions in the Second Ridge
area (profile locations shown in Fig. F3). Heat flow
data are colocated along seismic Line GeoB00-194,
south of Baby Bare outcrop and Site U1301 (Fig.
F16). The seafloor in this region is generally flat, but
basement elevation varies by hundreds of meters.
Sediment thins to ~280–300 m above the ~1500 m
wide basement peak along Line GeoB00-194 (be-
tween CDP 675 and 825; Fig. F16), and basement
continues to shoal toward the north, eventually
emerging as Baby Bare outcrop 4.5 km away. Seafloor
heat flow varies between 150 and 280 mW/m2 along
this profile, with higher values corresponding to
measurements made directly above the basement
high. Upper basement temperatures are projected to
dip slightly over the peak of the basement high but
are generally near 60°–70°C despite significant differ-
ences in basement elevation. Upper basement tem-
peratures are ~20°C warmer than predicted on the
basis of conductive models, assuming a background
heat flow for this area of 180 mW/m2. As described
in earlier studies, the homogeneity in basement tem-
peratures in this area, which would vary by ~50°C if
heat flow were entirely conductive, requires vigorous
local hydrothermal circulation (e.g., Davis and
Becker, 2004; Davis et al., 1997b; Spinelli et al.,
2004).

Seismic Line 92-1 (Becker et al., 2000) crosses Second
Ridge ~3 km north of Baby Bare outcrop and 2 km
south of Site U1301 (Figs. F3, F17). As along Line
GeoB00-194 7.5 km to the south, heat flow is ele-
vated immediately above the buried basement high,
but once again calculated temperatures in upper-
most basement are consistent at ~60°–70°C. This
profile shows heat flow returning to a background
value of ~180 mW/m2 within several kilometers of
the main basement high.

Seismic Lines Geob00-205 and 208 pass across the
Wuzza Bare subcrop, a former basement outcrop that
is presently buried ~5 km north-northeast of Site
U1301 (Figs. F3, F7, F18). This buried basement high
is not directly associated with abyssal hill topogra-
phy like Baby Bare or Mama Bare outcrops but ap-
pears to be a more isolated volcanic edifice (Fig. F7).
Wuzza Bare subcrop rises >450 m above surrounding
basement to within ~40–50 m of the seafloor, per-
haps closer because the nearest seismic line does not
necessarily pass immediately above the buried sum-
mit. Seafloor heat flow increases above Wuzza Bare
subcrop, from ~150 to >2500 mW/m2 along Line
GeoB00-208. Values are somewhat lower along Line
spheric cooling models. Extrapolated temperatures
along the sediment/basement interface remain uni-
form at 32°–38°C. This segment of data is typical of
locations where the seafloor is flat and there is little
buried basement relief; regional heat flow suppres-
sion results from rapid lateral fluid flow in basement
(e.g., Davis et al., 1992, 1999; Stein and Fisher,
2003).

Figure F14 shows a 23 km long profile extending
from the edge of basement exposure west of the HT
area to several kilometers east of the First Ridge area.
Similar profiles were shown in earlier studies, illus-
trating how crust in this area warms with increasing
age (e.g., Davis et al., 1992, 1997); we show this ex-
ample because it allows comparison of earlier and
newly acquired seismic data. Measured heat flow in-
creases systematically along the transect, from ~100
mW/m2 near the edge of basement exposure to >600
mW/m2 above the first buried basement ridge, and
upper basement temperatures increase systematically
from <10° to ~45°C. Heat flow is suppressed by >80%
relative to lithospheric predictions near the exposed
basement in the west but achieves predicted values
where basement shoals. Basement isotherms at the
western end of the transect are strongly depressed. A
local ~50 mW/m2 increase in heat flow west of com-
mon depth point (CDP) 175, Line 950804e (Fig. F14,
immediately adjacent to the area of exposed basalt)
may result in part from thermal refraction associated
with basement and seafloor relief and in part from
the thinning of the conductive sediment layer as lo-
cally isothermal basement rises to the seafloor (Fig.
F14A).

Heat flow values across the First Ridge area along this
transect are locally variable, but on average, they are
consistent with lithospheric cooling models. Base-
ment temperatures remain essentially isothermal at
45°C across most of seismic Line GeoB00-252 (Fig.
F14B). This uniformity in upper basement tempera-
tures, despite differences in basement elevation of
100 m, is consistent with vigorous, local hydrother-
mal circulation in basement.

Figure F15 shows heat flow measurements colocated
along seismic Line GeoB00-240 crossing the eastern
part of the HT and First Ridge areas. Measured sea-
floor heat flow across the HT area is generally ~320
mW/m2, well below the lithospheric prediction, but
rises abruptly above the buried basement high to
>800 mW/m2. Upper basement temperatures remain
remarkably uniform at ~25°C across the entire pro-
file. These values are somewhat lower than those
seen along Line GeoB00-252 to the north (Figs. F4,
F14B), largely because the sediment cover becomes
thinner to the south. Basement temperatures near
the eastern end of the transect are also somewhat
14
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basement (e.g., Becker and Davis, 2003; Becker and
Fisher, 2000; Davis et al., 1997b; Fisher et al., 1997;
Spinelli and Fisher, 2004).

Summary and conclusions
Several decades of mapping, seismic, and heat flow
expeditions have made the eastern flank of the JFR
one of the best-surveyed hydrothermally active re-
gions in the world. This ridge flank provides numer-
ous “type examples” of coupled fluid-heat processes
within the oceanic crust and provides a useful refer-
ence to which other ridge flanks can be compared.
Geophysical surveys have helped to identify numer-
ous characteristic features and have facilitated plan-
ning for drilling operations to explore the nature,
dynamics, and influence of fluid flow through upper
oceanic crust. However, despite considerable effort,
there remain important open questions regarding
sediment deposition and modification processes; the
scales, patterns, and rates of fluid circulation in base-
ment; and magnitudes of lithospheric and advective
heat loss in this region, all of which could be ad-
dressed with a modest amount of additional sedi-
ment sampling and geophysical data acquisition.

Swath mapping of this ridge flank illustrates how
thick accumulations of turbidites and hemipelagic
sediment blanket the seafloor across long distances,
reducing the locations where basement is exposed
directly to the ocean. The relative scarcity of base-
ment outcrops on sites older than ~1.5 Ma has bene-
fited several studies of ridge-flank circulation because
it makes it possible to resolve first-order flow paths
and flow rates between sites of fluid recharge and
discharge. However, the specific roles of individual
outcrops in extracting lithospheric heat in this area
remain to be quantified, as do the crustal properties
required to allow these outcrops to serve as efficient
crustal ventilators. Several outcrops are good candi-
dates for future work to assess the significance of
these features to local and regional hydrogeologic
conditions, including newly mapped features.

Seismic coverage across this region has been essential
for determining sediment thickness and basement
geometry, understanding relations between seafloor
outcrops and underlying basement structure, and
planning and interpreting thermal surveys. Seismic
data have also allowed investigation of numerous
sedimentary processes, particularly the influence of
basement relief on sediment deposition and subse-
quent modification. High-resolution seismic data
have helped to map out abrupt contrasts in sediment
properties, many of which are associated with base-
ment highs and fluid seepage at the seafloor, and
GeoB00-205, ~200 m to the north. Making heat flow
measurements in this area was challenging because
coarse-grained turbidites and debris flow deposits
near the seafloor made penetration difficult and led
to uneven frictional heating and cooling of ther-
mistors in the heat flow probe. In addition, picking
the depth of basement from seismic profiles is chal-
lenging across Wuzza Bare subcrop because the sedi-
ment/basement interface is steeply sloping and
sometimes indistinct. As a result, uncertainties in
seafloor heat flow and upper basement temperatures
along this transect are greater than those on most
other parts of the ridge flank (Fig. F18). Estimated
basement temperatures are generally 50°–100°C
along Line GeoB00-208. Estimated temperatures are
lower along Line GeoB00-205, but this must result,
at least in part, from the 1-D and 2-D assumptions
inherent in these calculations and from the seismic
line not crossing the buried summit.

A final example of seismic and thermal data illus-
trates extreme conditions that develop near rela-
tively isolated basement outcrops in locations where
hydrothermal fluids recharge and discharge (Fig.
F19). Baby Bare and Grizzly Bare outcrops are located
52 km apart and both are surrounded by flat seafloor
below which there is 500–600 m of sediment. Fluids
exiting from Baby Bare outcrop are known to be very
young, despite being highly altered, and geochemi-
cal considerations preclude the possibility that these
fluids recharged through nearby sediment or base-
ment rocks (Mottl et al., 1998; Wheat et al., 2000;
Wheat and Mottl, 2000). Instead, recharge of fluids
that eventually exit through Baby Bare outcrop is
thought to occur through Grizzly Bare outcrop
(Fisher et al., 2003a). Thermal surveys of these out-
crops show strongly contrasting conditions in base-
ment: temperature contours are swept upward by
venting fluids at Baby Bare outcrop, but are swept
downward by recharging fluids at Grizzly Bare out-
crop (Fig. F19). The thermal influence of both re-
charging and discharging outcrops appears to extend
only a few kilometers from the limit of basement ex-
posure. Considering the forces available to drive re-
charge, discharge, and transport between the two
outcrops (the difference in fluid pressure at the base
of recharging and discharging columns of fluid) and
the volume flux of fluid exiting Baby Bare outcrop
(Mottl et al., 1998; Thomson et al., 1995; Wheat et
al., 2004), the bulk permeability of the basement
rocks along the flow path must be on the order of
10–12 to 10–9 m2 (Fisher et al., 2003a). These values are
consistent with independent estimates made from
packer and open hole thermal tests and results of nu-
merical models of coupled heat and fluid flow in
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from biases in sampling or data filtering. Resolution
of this conundrum may result from a few carefully
positioned heat flow profiles along existing seismic
lines across relatively flat basement, tens of kilome-
ters from the nearest outcrops. Additional modeling
will also help us to understand what observed physi-
cal conditions mean for the hydrogeologic and ther-
mal properties of oceanic crust, as well as the nature
of hydrothermal processes within extensive base-
ment aquifers.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F1. Regional bathymetric map showing locations of IODP Expedition 301 sites, the ODP Leg 168 drill-
ing transect, and selected regional tectonic features. Bathymetry from Smith and Sandwell (1997). SR = Sec-
ond Ridge (primary work area during Expedition 301). DR = Deep Ridge, FR = First Ridge (secondary [backup]
work areas for Expedition 301). Box shows location of Figure F2.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F3. Swath map of Second Ridge and Southern outcrop area, showing distribution of heat flow data and
track lines. Detailed track chart of Second Ridge area is shown in Figure F6. Note that seafloor in Second Ridge
area is actually slightly deeper (darker blue) than that of the surrounding area and that the seafloor deepens to
the south, in the direction of Grizzly Bare outcrop (purple). Also note sediment transport channel to the east
of Grizzly Bare outcrop (see “Supplementary Material” for the high-resolution version of this figure in its
native format).
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F5. Swath map of northern outcrop area, including Zona Bare outcrop, showing distribution of heat
flow data and track lines (see “Supplementary Material” for the high-resolution version of this figure in its
native format).
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8. Example seismic lines from the 2000 ImageFlux expedition across Second Ridge Area. Line loca-
tions are shown in Figures F3 and F6. VE = vertical exaggeration. A. Line GeoB00-483, run across strike. Posi-
tion of crossline GeoB00-490 is shown. Basement reflectors, the bases of filled distributary channels, and
sections of dominantly sandy lithology are shown on several profiles. (Continued on next six pages.)
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8 (continued). B. Line GeoB00-471, run across strike. Position of crossline GeoB00-490 is shown. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8 (continued). C. Line GeoB00-482, run across strike. Position of crossline GeoB00-490 is shown, as
are locations of Sites 1026 and 1027 (offset ~110–120 m north of this seismic line) and planned location for
Site SR-2, where cross-hole experiments will be initiated during a future expedition. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8 (continued). D. Line GeoB00-474, run across strike. Position of crossline GeoB00-490 is shown. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8 (continued). E. Line GeoB00-466, run across strike. Position of crossline GeoB00-490 is shown, as is
position of Site U1301. 
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Figure F8 (continued). F. Line GeoB00-490, run along strike near the crest of buried basement 
shown. 

3.6

3.7

3.8

3.9

4.0

4.1

4.2
300400 200

Common depth point

Tw
o-

w
ay

 tr
av

el
tim

e 
(s

)

Crossline
GeoB00-466

Crossline
GeoB00-474

Crossline
GeoB00-482

Crossline
GeoB00-471

GeoB00-490S

Igneous 
basement

F



L. Zühlsdorff et al. Expedition 301 site surveys
Figure F8 (continued). G. Part of Line GeoB00-208 and associated Parasound data across Wuzza Bare subcrop.
Note acoustic washout immediately above the buried basement high, extending from depth almost to the sea-
floor.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F9. Track chart for First Ridge area, showing newer and older survey locations, ODP drill sites, and sec-
ondary IODP sites. Highlighted lines are shown in Figure F10.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F10. Example seismic lines. MCS and Parasound data, from the 2000 ImageFlux expedition across First
Ridge area. Line locations are shown in Figures F4 and F9. VE = vertical exaggeration. A. InLine 2. (Continued
on next five pages.)
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F10 (continued). B. InLine 33. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F10 (continued). C. InLine 44. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F10 (continued). D. InLine 63. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F10 (continued). E. InLine 91. 
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F11. Track chart for Deep Ridge and section of EW0207 Line 1. Bathymetric data are plotted using the
same depth scale and color palette as used in Figure F3. In contrast to all other seismic displays presented in
this paper, automatic gain control was applied to Deep Ridge data in order to better image deep reflections
and basement Layer 2A/2B boundary. CDP = common depth point.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F12. Histograms of heat flow data from young seafloor on the eastern flank of the Juan de Fuca Ridge.
A. Complete data set of ~1700 values. B. Filtered data set of 300 values from 3.4–3.6 Ma seafloor, avoiding
areas of basement exposure or significant buried relief, illustrating characteristic “background” heat flow used
as a reference for subsequent conductive modeling. Mean of the filtered values is 181 ± 16 mW/m2.
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Figure F13. Seismic data, heat flow, and calculated sediment/basement interface (SBI) temperatures along Line
950802g (line location shown in Fig. F4). This location is characteristic of an area having heat flow and base-
ment temperatures that are considerably lower than predicted by conductive cooling models for oceanic
lithosphere and where there is little significant basement relief. A. Measured seafloor heat flow (open squares),
with uncertainties in measured values being smaller than the symbols. Dotted line is output of two dimen-
sional conductive model, using lithospheric cooling curve as lower thermal boundary condition. B. Calcu-
lated SBI temperatures (circles) based on heat flow and seismic data and output of two-dimensional
conductive model (dotted line). Uncertainties in upper basement temperatures are indicated by vertical bars,
based on the accumulation of errors through downward-continuation calculations, as described in the text.
C. Seismic data overlain by isotherms calculated from measured seafloor heat flow. Vertical exaggeration = ~3.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F14. Seismic data, heat flow, and calculated sediment/basement interface (SBI) temperatures along
Lines 950804e and GeoB00-252 (line locations shown in Fig. F4). These data cross the hydrothermal transi-
tion area and First Ridge, showing a progression in heat flow and basement temperatures. Locations of Lines
950802g (to the north; Fig. F13) and GeoB00-240 (to the south; Fig. F15) are shown, as is the perpendicular
distance to the active ridge axis to the west. A. Measured seafloor heat flow (open squares), with uncertainties
in measured values being smaller than the symbols. Dotted line is output of two dimensional conductive
model, using lithospheric cooling curve as lower thermal boundary condition. B. Calculated SBI temperatures
(circles) based on heat flow and seismic data and output of two-dimensional conductive model (dotted line).
Uncertainties in upper basement temperatures are indicated by vertical bars, based on the accumulation of
errors through downward-continuation calculations, as described in the text. C. Seismic data overlain by iso-
therms calculated from measured seafloor heat flow. Vertical exaggeration = ~25.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F15. Seismic, heat flow, and calculated sediment/basement interface (SBI) temperatures along seismic
Line GeoB00-240, across the eastern part of the hydrothermal transition area and First Ridge (line location
shown in Fig. F4). A. Measured seafloor heat flow (open squares), with uncertainties in RetroFlux (eastern) val-
ues shown with horizontal bars. Dotted line is output of two dimensional conductive model, using litho-
spheric cooling curve as lower thermal boundary condition. B. Calculated SBI temperatures (circles) based on
heat flow and seismic data and output of two-dimensional conductive model (dotted line). Uncertainties in
upper basement temperatures are indicated by vertical bars, based on the accumulation of errors through
downward-continuation calculations, as described in the text. C. Seismic data overlain by isotherms calcu-
lated from measured seafloor heat flow. Vertical exaggeration = ~10.
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L. Zühlsdorff et al. Expedition 301 site surveys
Figure F16. Seismic, heat flow, and calculated sediment/basement interface (SBI) temperatures around and
across the Second Ridge along seismic Line GeoB00-194, ~4.5 km south of Baby Bare outcrop (line location in
Fig. F3). A. Measured seafloor heat flow (open squares), with uncertainties in measured values being smaller
than the symbols. Dotted line is output of two dimensional conductive model, using lithospheric cooling
curve as lower thermal boundary condition. B. Calculated SBI temperatures (circles) based on heat flow and
seismic data and output of two-dimensional conductive model (dotted line). Uncertainties in upper basement
temperatures are indicated by vertical bars, based on the accumulation of errors through downward-continua-
tion calculations, as described in the text. C. Seismic data overlain by isotherms calculated from measured sea-
floor heat flow. Vertical exaggeration = ~5.
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Figure F17. Seismic, heat flow, and calculated sediment/basement interface (SBI) temperatures around and
across the Second Ridge along seismic Line 92-1 (Becker et al., 2000), ~2 km north of Baby Bare outcrop (line
location in Fig. F3). A. Measured seafloor heat flow (open squares), with uncertainties in measured values
being smaller than the symbols. Dotted line is output of two dimensional conductive model, using litho-
spheric cooling curve as lower thermal boundary condition. B. Calculated SBI temperatures (circles) based on
heat flow and seismic data and output of two-dimensional conductive model (dotted line). Uncertainties in
upper basement temperatures are indicated by vertical bars, based on the accumulation of errors through
downward-continuation calculations, as described in the text. C. Seismic data overlain by isotherms calcu-
lated from measured seafloor heat flow. Vertical exaggeration = ~7.
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Figure F18. Seismic, heat flow, and calculated sediment/basement interface (SBI) temperatures across the
Wuzza Bare subcrop along seismic Lines GeoB00-208 and GeoB00-205, ~5 km north-northeast of Site U1301
(line location in Fig. F3). Many of the heat flow values have large uncertainties, as indicated with the error
bars, because of insertion difficulties and high frictional heating associated with coarse-grained sediments
above this basement high. In combination with difficulties in determining the exact location of steeply dip-
ping basement, this leads to large uncertainties in projected upper-basement temperatures. A. Results along
Line GeoB00-208, which appears to pass close to the peak of the buried basement high. Measured seafloor
heat flow (open squares), with uncertainties in measured values being smaller than the symbols. Dotted line is
output of two dimensional conductive model, using lithospheric cooling curve as lower thermal boundary
condition. B. Results from Line GeoB00-205, which passes ~200 m to the south. Calculated SBI temperatures
(circles) based on heat flow and seismic data and output of two-dimensional conductive model (dotted line).
Uncertainties in upper basement temperatures are indicated by vertical bars, based on the accumulation of
errors through downward-continuation calculations, as described in the text. C. Seismic data overlain by iso-
therms calculated from measured seafloor heat flow. Vertical exaggeration = ~5.
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