0800h

OS21C-1513 Poster

3D multi-channel seismic imaging of melt-rich lenses beneath and off the East Pacific Rise Integrated Study Site

Xu, M

minxu@mit.edu

EAPS, Massachusetts Institute of Technology, Cambridge, MA, USA

Canales, J

jpcanales@whoi.edu

MGG, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Carton, H D

hcarton@ldeo.columbia.edu

MGG, Lamont-Doherty Earth Observatory, Palisades, NY, USA

Carbotte, S M

carbotte@ldeo.columbia.edu

MGG, Lamont-Doherty Earth Observatory, Palisades, NY, USA

Nedimovic, M R

mladen@dal.ca

Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada

Mutter, J C

jcm7@columbia.edu

MGG, Lamont-Doherty Earth Observatory, Palisades, NY, USA

Melt has a particularly strong effect on shear velocity, and therefore affects the amplitude versus offset behavior of P- and S-converted waves reflected off a crustal melt lens. The first 3D multi-streamer seismic reflection experiment conducted aboard R/V Langseth (Cruise MGL0812) collected a very dense dataset along and across the northern East Pacific Rise (EPR, ~9°34'N-9°58'N). In addition to P waves reflecting off the top of the axial magma chamber (AMC), this dataset contains evidence for the S-converted phase PAMCS, which allows us to qualitatively image melt-rich sections of the AMC (i.e., portions of the melt lens in which crystals are disconnected and cannot transmit shear stresses) by producing and comparing P- and S-wave partial-offset stacks. Reflection images obtained from a subset of data collected along the ridge crest between 9°42'N-9°54'N show a prominent melt-rich zone at ~9°42'N-9°44'N, ~10-12 km to the south of the southern end of the 2005-06 volcanic eruption. The preliminary images also show evidence for two other melt-rich sections where abundant hydrothermal activity has been documented: at ~9°47'N-9°48'N (southern edge of the 2005-06 eruption), and at ~9°50'N-9°52'N (near the center of the 2005-06 eruption), although data from these two areas require more analysis to confirm this finding. The melt-rich zones are ~2-4 km long and spaced every ~10-15 km along the ridge axis. We will also present results from data collected over melt lenses located several kilometers off-axis (see Canales et
al., this meeting). This high resolution imaging of the distribution of crustal melt bodies and correlation with seafloor hydrothermal and biological activity will provide a key piece of information that is currently missing from our knowledge of the EPR mantle-to-microbe system.

[3017] MARINE GEOLOGY AND GEOPHYSICS / Hydrothermal systems
[3035] MARINE GEOLOGY AND GEOPHYSICS / Midocean ridge processes
[3045] MARINE GEOLOGY AND GEOPHYSICS / Seafloor morphology, geology, and geophysics
[7245] SEISMOLOGY / Mid-ocean ridges
Ocean Sciences (OS)
2010 Fall Meeting